Fast and Efficient Method for Large-Scale Aerial Image Stitching

Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adapti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.127852-127865
Hauptverfasser: Pham, Nam Thanh, Park, Sihyun, Park, Chun-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127865
container_issue
container_start_page 127852
container_title IEEE access
container_volume 9
creator Pham, Nam Thanh
Park, Sihyun
Park, Chun-Su
description Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods.
doi_str_mv 10.1109/ACCESS.2021.3111203
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9531644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9531644</ieee_id><doaj_id>oai_doaj_org_article_4b5b65c24c484e3c8ff60720c74046c0</doaj_id><sourcerecordid>2575130640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</originalsourceid><addsrcrecordid>eNpNUEtLw0AQDqJg0f6CXhY8p-4zu7lZQquFiofoedluJumWNFs36cF_79aU4lxmGL4XX5LMCJ4TgvPnRVEsy3JOMSVzRgihmN0kE0qyPGWCZbf_7vtk2vd7HEfFl5CT5GVl-gGZrkLLunbWQTegdxh2vkK1D2hjQgNpaU0LaAHBmRatD6YBVA5usDvXNY_JXW3aHqaX_ZB8rZafxVu6-XhdF4tNajlWQ0qYZVLmhKua55JUtMpxTKwqCxQwF5YaShhk2DBllZDArSAs4iMIFN2yh2Q96lbe7PUxuIMJP9obp_8ePjTahMHZFjTfim0WFbnligOzqq4zLCm2kmOeWRy1nkatY_DfJ-gHvfen0MX4mgoZfXHGzyg2omzwfR-gvroSrM_N67F5fW5eX5qPrNnIcgBwZeSCkYxz9guxOHrJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575130640</pqid></control><display><type>article</type><title>Fast and Efficient Method for Large-Scale Aerial Image Stitching</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pham, Nam Thanh ; Park, Sihyun ; Park, Chun-Su</creator><creatorcontrib>Pham, Nam Thanh ; Park, Sihyun ; Park, Chun-Su</creatorcontrib><description>Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3111203</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Aerial images ; Blurring ; Distortion ; Feature extraction ; Image quality ; Image stitching ; local homography ; Real-time systems ; Software ; Stitching ; Unmanned aerial vehicles ; Visual observation ; Visualization</subject><ispartof>IEEE access, 2021, Vol.9, p.127852-127865</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</citedby><cites>FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</cites><orcidid>0000-0003-2269-910X ; 0000-0003-4250-2597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9531644$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Pham, Nam Thanh</creatorcontrib><creatorcontrib>Park, Sihyun</creatorcontrib><creatorcontrib>Park, Chun-Su</creatorcontrib><title>Fast and Efficient Method for Large-Scale Aerial Image Stitching</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods.</description><subject>Adaptive algorithms</subject><subject>Aerial images</subject><subject>Blurring</subject><subject>Distortion</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>Image stitching</subject><subject>local homography</subject><subject>Real-time systems</subject><subject>Software</subject><subject>Stitching</subject><subject>Unmanned aerial vehicles</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEtLw0AQDqJg0f6CXhY8p-4zu7lZQquFiofoedluJumWNFs36cF_79aU4lxmGL4XX5LMCJ4TgvPnRVEsy3JOMSVzRgihmN0kE0qyPGWCZbf_7vtk2vd7HEfFl5CT5GVl-gGZrkLLunbWQTegdxh2vkK1D2hjQgNpaU0LaAHBmRatD6YBVA5usDvXNY_JXW3aHqaX_ZB8rZafxVu6-XhdF4tNajlWQ0qYZVLmhKua55JUtMpxTKwqCxQwF5YaShhk2DBllZDArSAs4iMIFN2yh2Q96lbe7PUxuIMJP9obp_8ePjTahMHZFjTfim0WFbnligOzqq4zLCm2kmOeWRy1nkatY_DfJ-gHvfen0MX4mgoZfXHGzyg2omzwfR-gvroSrM_N67F5fW5eX5qPrNnIcgBwZeSCkYxz9guxOHrJ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pham, Nam Thanh</creator><creator>Park, Sihyun</creator><creator>Park, Chun-Su</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2269-910X</orcidid><orcidid>https://orcid.org/0000-0003-4250-2597</orcidid></search><sort><creationdate>2021</creationdate><title>Fast and Efficient Method for Large-Scale Aerial Image Stitching</title><author>Pham, Nam Thanh ; Park, Sihyun ; Park, Chun-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Aerial images</topic><topic>Blurring</topic><topic>Distortion</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>Image stitching</topic><topic>local homography</topic><topic>Real-time systems</topic><topic>Software</topic><topic>Stitching</topic><topic>Unmanned aerial vehicles</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Nam Thanh</creatorcontrib><creatorcontrib>Park, Sihyun</creatorcontrib><creatorcontrib>Park, Chun-Su</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Nam Thanh</au><au>Park, Sihyun</au><au>Park, Chun-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Efficient Method for Large-Scale Aerial Image Stitching</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>127852</spage><epage>127865</epage><pages>127852-127865</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3111203</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2269-910X</orcidid><orcidid>https://orcid.org/0000-0003-4250-2597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.127852-127865
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9531644
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive algorithms
Aerial images
Blurring
Distortion
Feature extraction
Image quality
Image stitching
local homography
Real-time systems
Software
Stitching
Unmanned aerial vehicles
Visual observation
Visualization
title Fast and Efficient Method for Large-Scale Aerial Image Stitching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Efficient%20Method%20for%20Large-Scale%20Aerial%20Image%20Stitching&rft.jtitle=IEEE%20access&rft.au=Pham,%20Nam%20Thanh&rft.date=2021&rft.volume=9&rft.spage=127852&rft.epage=127865&rft.pages=127852-127865&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3111203&rft_dat=%3Cproquest_ieee_%3E2575130640%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575130640&rft_id=info:pmid/&rft_ieee_id=9531644&rft_doaj_id=oai_doaj_org_article_4b5b65c24c484e3c8ff60720c74046c0&rfr_iscdi=true