Fast and Efficient Method for Large-Scale Aerial Image Stitching
Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adapti...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.127852-127865 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127865 |
---|---|
container_issue | |
container_start_page | 127852 |
container_title | IEEE access |
container_volume | 9 |
creator | Pham, Nam Thanh Park, Sihyun Park, Chun-Su |
description | Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods. |
doi_str_mv | 10.1109/ACCESS.2021.3111203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9531644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9531644</ieee_id><doaj_id>oai_doaj_org_article_4b5b65c24c484e3c8ff60720c74046c0</doaj_id><sourcerecordid>2575130640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</originalsourceid><addsrcrecordid>eNpNUEtLw0AQDqJg0f6CXhY8p-4zu7lZQquFiofoedluJumWNFs36cF_79aU4lxmGL4XX5LMCJ4TgvPnRVEsy3JOMSVzRgihmN0kE0qyPGWCZbf_7vtk2vd7HEfFl5CT5GVl-gGZrkLLunbWQTegdxh2vkK1D2hjQgNpaU0LaAHBmRatD6YBVA5usDvXNY_JXW3aHqaX_ZB8rZafxVu6-XhdF4tNajlWQ0qYZVLmhKua55JUtMpxTKwqCxQwF5YaShhk2DBllZDArSAs4iMIFN2yh2Q96lbe7PUxuIMJP9obp_8ePjTahMHZFjTfim0WFbnligOzqq4zLCm2kmOeWRy1nkatY_DfJ-gHvfen0MX4mgoZfXHGzyg2omzwfR-gvroSrM_N67F5fW5eX5qPrNnIcgBwZeSCkYxz9guxOHrJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575130640</pqid></control><display><type>article</type><title>Fast and Efficient Method for Large-Scale Aerial Image Stitching</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pham, Nam Thanh ; Park, Sihyun ; Park, Chun-Su</creator><creatorcontrib>Pham, Nam Thanh ; Park, Sihyun ; Park, Chun-Su</creatorcontrib><description>Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3111203</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Aerial images ; Blurring ; Distortion ; Feature extraction ; Image quality ; Image stitching ; local homography ; Real-time systems ; Software ; Stitching ; Unmanned aerial vehicles ; Visual observation ; Visualization</subject><ispartof>IEEE access, 2021, Vol.9, p.127852-127865</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</citedby><cites>FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</cites><orcidid>0000-0003-2269-910X ; 0000-0003-4250-2597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9531644$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Pham, Nam Thanh</creatorcontrib><creatorcontrib>Park, Sihyun</creatorcontrib><creatorcontrib>Park, Chun-Su</creatorcontrib><title>Fast and Efficient Method for Large-Scale Aerial Image Stitching</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods.</description><subject>Adaptive algorithms</subject><subject>Aerial images</subject><subject>Blurring</subject><subject>Distortion</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>Image stitching</subject><subject>local homography</subject><subject>Real-time systems</subject><subject>Software</subject><subject>Stitching</subject><subject>Unmanned aerial vehicles</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEtLw0AQDqJg0f6CXhY8p-4zu7lZQquFiofoedluJumWNFs36cF_79aU4lxmGL4XX5LMCJ4TgvPnRVEsy3JOMSVzRgihmN0kE0qyPGWCZbf_7vtk2vd7HEfFl5CT5GVl-gGZrkLLunbWQTegdxh2vkK1D2hjQgNpaU0LaAHBmRatD6YBVA5usDvXNY_JXW3aHqaX_ZB8rZafxVu6-XhdF4tNajlWQ0qYZVLmhKua55JUtMpxTKwqCxQwF5YaShhk2DBllZDArSAs4iMIFN2yh2Q96lbe7PUxuIMJP9obp_8ePjTahMHZFjTfim0WFbnligOzqq4zLCm2kmOeWRy1nkatY_DfJ-gHvfen0MX4mgoZfXHGzyg2omzwfR-gvroSrM_N67F5fW5eX5qPrNnIcgBwZeSCkYxz9guxOHrJ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Pham, Nam Thanh</creator><creator>Park, Sihyun</creator><creator>Park, Chun-Su</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2269-910X</orcidid><orcidid>https://orcid.org/0000-0003-4250-2597</orcidid></search><sort><creationdate>2021</creationdate><title>Fast and Efficient Method for Large-Scale Aerial Image Stitching</title><author>Pham, Nam Thanh ; Park, Sihyun ; Park, Chun-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-13c3779148f4971d2d902028dce2e045c2a213e60a38c857e4c513914202e82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Aerial images</topic><topic>Blurring</topic><topic>Distortion</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>Image stitching</topic><topic>local homography</topic><topic>Real-time systems</topic><topic>Software</topic><topic>Stitching</topic><topic>Unmanned aerial vehicles</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Nam Thanh</creatorcontrib><creatorcontrib>Park, Sihyun</creatorcontrib><creatorcontrib>Park, Chun-Su</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Nam Thanh</au><au>Park, Sihyun</au><au>Park, Chun-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Efficient Method for Large-Scale Aerial Image Stitching</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>127852</spage><epage>127865</epage><pages>127852-127865</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent studies on image stitching have been extensively conducted to stitch panoramic or 360° images using a small number of input images. The stitching of aerial images, that are captured by unmanned aerial vehicles (UAVs), has various practical applications. In this paper, we propose a fast adaptive stitching algorithm for handling numerous aerial images. First, the proposed method analyzes the relative positions and overlapping regions of the UAV image footprints by exploiting their geotag information. Based on the analysis, an adaptive selection algorithm is proposed to eliminate the densely overlapped images from among all the UAV images. Then, the proposed method sequentially performs fast feature extraction and feature matching. Finally, a local warp method, with a smooth transition for overlapping regions, is introduced to alleviate the blurring artifacts and achieve highly accurate image alignment. The experiments are conducted for various scenarios to generate seamless terrestrial mosaic images of large areas. The proposed method improves the visual quality of the stitched image, by decreasing the estimated reprojection error and the number of observed visual distortions. In addition, the proposed method can substantially reduce the processing time compared with conventional stitching methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3111203</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2269-910X</orcidid><orcidid>https://orcid.org/0000-0003-4250-2597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.127852-127865 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9531644 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptive algorithms Aerial images Blurring Distortion Feature extraction Image quality Image stitching local homography Real-time systems Software Stitching Unmanned aerial vehicles Visual observation Visualization |
title | Fast and Efficient Method for Large-Scale Aerial Image Stitching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Efficient%20Method%20for%20Large-Scale%20Aerial%20Image%20Stitching&rft.jtitle=IEEE%20access&rft.au=Pham,%20Nam%20Thanh&rft.date=2021&rft.volume=9&rft.spage=127852&rft.epage=127865&rft.pages=127852-127865&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3111203&rft_dat=%3Cproquest_ieee_%3E2575130640%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575130640&rft_id=info:pmid/&rft_ieee_id=9531644&rft_doaj_id=oai_doaj_org_article_4b5b65c24c484e3c8ff60720c74046c0&rfr_iscdi=true |