Moving Target Localization and Activity/Gesture Recognition for Indoor Radio Frequency Sensing Applications

In this paper, a dual-frequency continuous wave radar is proposed to achieve both localization and activity/ gesture recognition simultaneously. Specifically, features of different movements will be classified by the activity and gesture recognition network (AGRNet) which is a lightweight network ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-11, Vol.21 (21), p.24318-24326
Hauptverfasser: Sun, Yingxiang, Xiong, Haoqiu, Tan, Danny Kai Pin, Han, Tony Xiao, Du, Rui, Yang, Xun, Ye, Terry Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24326
container_issue 21
container_start_page 24318
container_title IEEE sensors journal
container_volume 21
creator Sun, Yingxiang
Xiong, Haoqiu
Tan, Danny Kai Pin
Han, Tony Xiao
Du, Rui
Yang, Xun
Ye, Terry Tao
description In this paper, a dual-frequency continuous wave radar is proposed to achieve both localization and activity/ gesture recognition simultaneously. Specifically, features of different movements will be classified by the activity and gesture recognition network (AGRNet) which is a lightweight network based on MobileNet. The data that are recognized corresponding to walking will be used for moving target localization by comparing the phase difference in the Doppler domain between dual frequencies. In addition, a segmentation method is proposed to effectively segment continuous signals into individual time-periods corresponding to different motions by detecting the boundaries of signal changing. The experimental results show that the proposed method accomplishes the classification accuracy over 91% with 8 motion classes with a localization accuracy in the centimeter level.
doi_str_mv 10.1109/JSEN.2021.3111187
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9531622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9531622</ieee_id><sourcerecordid>2588070004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b13c4ac0f6715884d44120d2e17f498c20f6f952f4510c0fc359b7ccd9167a3e3</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxTdGExH9AMZLE88Lnf6hu0dCADGoCWDibVO6XVLEdm0XEvz0dsE4lzfJ_ObN5CXJPeAeAM77z8vxa49gAj0KsTJxkXSA8ywFwbLLtqc4ZVR8XCc3IWwxhlxw0Uk-X9zB2A1aSb_RDZo7JXfmRzbGWSRtiYaqMQfTHPtTHZq912ihldtYcwIq59HMli7KQpbGoYnX33tt1REttQ2t77Cud0ad_MJtclXJXdB3f9pN3ifj1egpnb9NZ6PhPFUkp026BqqYVLgaCOBZxkrGgOCSaBAVyzNF4qTKOakYBxwxRXm-FkqVOQyEpJp2k8ezb-1dfCc0xdbtvY0nCxINscAYs0jBmVLeheB1VdTefEl_LAAXbaZFm2nRZlr8ZRp3Hs47Rmv9z-ecwoAQ-gtHxXOV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588070004</pqid></control><display><type>article</type><title>Moving Target Localization and Activity/Gesture Recognition for Indoor Radio Frequency Sensing Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Yingxiang ; Xiong, Haoqiu ; Tan, Danny Kai Pin ; Han, Tony Xiao ; Du, Rui ; Yang, Xun ; Ye, Terry Tao</creator><creatorcontrib>Sun, Yingxiang ; Xiong, Haoqiu ; Tan, Danny Kai Pin ; Han, Tony Xiao ; Du, Rui ; Yang, Xun ; Ye, Terry Tao</creatorcontrib><description>In this paper, a dual-frequency continuous wave radar is proposed to achieve both localization and activity/ gesture recognition simultaneously. Specifically, features of different movements will be classified by the activity and gesture recognition network (AGRNet) which is a lightweight network based on MobileNet. The data that are recognized corresponding to walking will be used for moving target localization by comparing the phase difference in the Doppler domain between dual frequencies. In addition, a segmentation method is proposed to effectively segment continuous signals into individual time-periods corresponding to different motions by detecting the boundaries of signal changing. The experimental results show that the proposed method accomplishes the classification accuracy over 91% with 8 motion classes with a localization accuracy in the centimeter level.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3111187</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Activity/gesture recognition ; Continuous wave radar ; Doppler effect ; Feature extraction ; Feature recognition ; Gesture recognition ; Localization ; Location awareness ; micro-Doppler signature ; Moving targets ; Radar ; Radio frequency ; Segmentation ; Sensors ; Target recognition ; wireless sensing</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (21), p.24318-24326</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b13c4ac0f6715884d44120d2e17f498c20f6f952f4510c0fc359b7ccd9167a3e3</citedby><cites>FETCH-LOGICAL-c293t-b13c4ac0f6715884d44120d2e17f498c20f6f952f4510c0fc359b7ccd9167a3e3</cites><orcidid>0000-0001-5456-0757 ; 0000-0002-4359-3550 ; 0000-0003-2206-2870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9531622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9531622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Yingxiang</creatorcontrib><creatorcontrib>Xiong, Haoqiu</creatorcontrib><creatorcontrib>Tan, Danny Kai Pin</creatorcontrib><creatorcontrib>Han, Tony Xiao</creatorcontrib><creatorcontrib>Du, Rui</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>Ye, Terry Tao</creatorcontrib><title>Moving Target Localization and Activity/Gesture Recognition for Indoor Radio Frequency Sensing Applications</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, a dual-frequency continuous wave radar is proposed to achieve both localization and activity/ gesture recognition simultaneously. Specifically, features of different movements will be classified by the activity and gesture recognition network (AGRNet) which is a lightweight network based on MobileNet. The data that are recognized corresponding to walking will be used for moving target localization by comparing the phase difference in the Doppler domain between dual frequencies. In addition, a segmentation method is proposed to effectively segment continuous signals into individual time-periods corresponding to different motions by detecting the boundaries of signal changing. The experimental results show that the proposed method accomplishes the classification accuracy over 91% with 8 motion classes with a localization accuracy in the centimeter level.</description><subject>Activity recognition</subject><subject>Activity/gesture recognition</subject><subject>Continuous wave radar</subject><subject>Doppler effect</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Gesture recognition</subject><subject>Localization</subject><subject>Location awareness</subject><subject>micro-Doppler signature</subject><subject>Moving targets</subject><subject>Radar</subject><subject>Radio frequency</subject><subject>Segmentation</subject><subject>Sensors</subject><subject>Target recognition</subject><subject>wireless sensing</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxTdGExH9AMZLE88Lnf6hu0dCADGoCWDibVO6XVLEdm0XEvz0dsE4lzfJ_ObN5CXJPeAeAM77z8vxa49gAj0KsTJxkXSA8ywFwbLLtqc4ZVR8XCc3IWwxhlxw0Uk-X9zB2A1aSb_RDZo7JXfmRzbGWSRtiYaqMQfTHPtTHZq912ihldtYcwIq59HMli7KQpbGoYnX33tt1REttQ2t77Cud0ad_MJtclXJXdB3f9pN3ifj1egpnb9NZ6PhPFUkp026BqqYVLgaCOBZxkrGgOCSaBAVyzNF4qTKOakYBxwxRXm-FkqVOQyEpJp2k8ezb-1dfCc0xdbtvY0nCxINscAYs0jBmVLeheB1VdTefEl_LAAXbaZFm2nRZlr8ZRp3Hs47Rmv9z-ecwoAQ-gtHxXOV</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sun, Yingxiang</creator><creator>Xiong, Haoqiu</creator><creator>Tan, Danny Kai Pin</creator><creator>Han, Tony Xiao</creator><creator>Du, Rui</creator><creator>Yang, Xun</creator><creator>Ye, Terry Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5456-0757</orcidid><orcidid>https://orcid.org/0000-0002-4359-3550</orcidid><orcidid>https://orcid.org/0000-0003-2206-2870</orcidid></search><sort><creationdate>20211101</creationdate><title>Moving Target Localization and Activity/Gesture Recognition for Indoor Radio Frequency Sensing Applications</title><author>Sun, Yingxiang ; Xiong, Haoqiu ; Tan, Danny Kai Pin ; Han, Tony Xiao ; Du, Rui ; Yang, Xun ; Ye, Terry Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b13c4ac0f6715884d44120d2e17f498c20f6f952f4510c0fc359b7ccd9167a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activity recognition</topic><topic>Activity/gesture recognition</topic><topic>Continuous wave radar</topic><topic>Doppler effect</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Gesture recognition</topic><topic>Localization</topic><topic>Location awareness</topic><topic>micro-Doppler signature</topic><topic>Moving targets</topic><topic>Radar</topic><topic>Radio frequency</topic><topic>Segmentation</topic><topic>Sensors</topic><topic>Target recognition</topic><topic>wireless sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingxiang</creatorcontrib><creatorcontrib>Xiong, Haoqiu</creatorcontrib><creatorcontrib>Tan, Danny Kai Pin</creatorcontrib><creatorcontrib>Han, Tony Xiao</creatorcontrib><creatorcontrib>Du, Rui</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>Ye, Terry Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Yingxiang</au><au>Xiong, Haoqiu</au><au>Tan, Danny Kai Pin</au><au>Han, Tony Xiao</au><au>Du, Rui</au><au>Yang, Xun</au><au>Ye, Terry Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving Target Localization and Activity/Gesture Recognition for Indoor Radio Frequency Sensing Applications</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>24318</spage><epage>24326</epage><pages>24318-24326</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, a dual-frequency continuous wave radar is proposed to achieve both localization and activity/ gesture recognition simultaneously. Specifically, features of different movements will be classified by the activity and gesture recognition network (AGRNet) which is a lightweight network based on MobileNet. The data that are recognized corresponding to walking will be used for moving target localization by comparing the phase difference in the Doppler domain between dual frequencies. In addition, a segmentation method is proposed to effectively segment continuous signals into individual time-periods corresponding to different motions by detecting the boundaries of signal changing. The experimental results show that the proposed method accomplishes the classification accuracy over 91% with 8 motion classes with a localization accuracy in the centimeter level.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3111187</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5456-0757</orcidid><orcidid>https://orcid.org/0000-0002-4359-3550</orcidid><orcidid>https://orcid.org/0000-0003-2206-2870</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-11, Vol.21 (21), p.24318-24326
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9531622
source IEEE Electronic Library (IEL)
subjects Activity recognition
Activity/gesture recognition
Continuous wave radar
Doppler effect
Feature extraction
Feature recognition
Gesture recognition
Localization
Location awareness
micro-Doppler signature
Moving targets
Radar
Radio frequency
Segmentation
Sensors
Target recognition
wireless sensing
title Moving Target Localization and Activity/Gesture Recognition for Indoor Radio Frequency Sensing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20Target%20Localization%20and%20Activity/Gesture%20Recognition%20for%20Indoor%20Radio%20Frequency%20Sensing%20Applications&rft.jtitle=IEEE%20sensors%20journal&rft.au=Sun,%20Yingxiang&rft.date=2021-11-01&rft.volume=21&rft.issue=21&rft.spage=24318&rft.epage=24326&rft.pages=24318-24326&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3111187&rft_dat=%3Cproquest_RIE%3E2588070004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588070004&rft_id=info:pmid/&rft_ieee_id=9531622&rfr_iscdi=true