Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs

In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2022-03, Vol.37 (3), p.3259-3271
Hauptverfasser: Yao, Yu, Huang, Yunkai, Peng, Fei, Dong, Jianning, Zhu, Zichong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3271
container_issue 3
container_start_page 3259
container_title IEEE transactions on power electronics
container_volume 37
creator Yao, Yu
Huang, Yunkai
Peng, Fei
Dong, Jianning
Zhu, Zichong
description In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the {dq} coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the {dq}-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min.
doi_str_mv 10.1109/TPEL.2021.3109157
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9527091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9527091</ieee_id><sourcerecordid>2605706044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</originalsourceid><addsrcrecordid>eNo9UN9PwjAQbowmIvoHGF-a-Fxs142tjwgoJCOSgM9L196ghK2z20j47-2EeC93l-_HXT6EnhkdMUbF23Y9T0cBDdiI-5VF8Q0aMBEyQhmNb9GAJklEEiH4PXpomgOlLIwoG6Dz7FzJ0igyA2W7-ggaT1RrToBnsqxNtcNTW7XOHvEK2r3VuLAOL8va2dMf2DkHVYu3TlaN6ad32MuT8SRb4HSakvlPZ-ra2y7Mbk82Nfhxvdqsmkd0V8hjA0_XPkTfH_PtdEHSr8_ldJISxfm4JUBjHos41zwXIk-0FkzzJKKCKqY0JCpXOWgtCy11HoKEQDMeh8B8FSHP-RC9Xnz9zz8dNG12sJ2r_MksGNMopmMahp7FLizlbNM4KLLamVK6c8Zo1iec9QlnfcLZNWGvebloDAD880UUxB7nvyFAeNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605706044</pqid></control><display><type>article</type><title>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</title><source>IEEE Electronic Library (IEL)</source><creator>Yao, Yu ; Huang, Yunkai ; Peng, Fei ; Dong, Jianning ; Zhu, Zichong</creator><creatorcontrib>Yao, Yu ; Huang, Yunkai ; Peng, Fei ; Dong, Jianning ; Zhu, Zichong</creatorcontrib><description><![CDATA[In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula> coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula>-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min.]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3109157</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active damping ; Active damping (AD) ; capacitor-current feedback ; Capacitors ; Control methods ; Controllers ; Coordinate transformations ; Coupling ; Damping ; Delays ; dynamic decoupling ; Frequency synchronization ; High speed ; high-speed surface-mounted permanent magnet synchronous machine (HSPMSM) ; Nyquist frequencies ; Permanent magnets ; Pole placement ; Resonance ; Resonant frequency ; Synchronous machines ; Synchronous motors ; synchronous rotating frame ; Transient analysis ; Transient performance</subject><ispartof>IEEE transactions on power electronics, 2022-03, Vol.37 (3), p.3259-3271</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</citedby><cites>FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</cites><orcidid>0000-0003-3569-7752 ; 0000-0003-0363-0828 ; 0000-0003-2214-1472 ; 0000-0001-8811-6873 ; 0000-0001-7008-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9527091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9527091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Huang, Yunkai</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Dong, Jianning</creatorcontrib><creatorcontrib>Zhu, Zichong</creatorcontrib><title>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula> coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula>-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min.]]></description><subject>Active control</subject><subject>Active damping</subject><subject>Active damping (AD)</subject><subject>capacitor-current feedback</subject><subject>Capacitors</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Coordinate transformations</subject><subject>Coupling</subject><subject>Damping</subject><subject>Delays</subject><subject>dynamic decoupling</subject><subject>Frequency synchronization</subject><subject>High speed</subject><subject>high-speed surface-mounted permanent magnet synchronous machine (HSPMSM)</subject><subject>Nyquist frequencies</subject><subject>Permanent magnets</subject><subject>Pole placement</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>Synchronous machines</subject><subject>Synchronous motors</subject><subject>synchronous rotating frame</subject><subject>Transient analysis</subject><subject>Transient performance</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UN9PwjAQbowmIvoHGF-a-Fxs142tjwgoJCOSgM9L196ghK2z20j47-2EeC93l-_HXT6EnhkdMUbF23Y9T0cBDdiI-5VF8Q0aMBEyQhmNb9GAJklEEiH4PXpomgOlLIwoG6Dz7FzJ0igyA2W7-ggaT1RrToBnsqxNtcNTW7XOHvEK2r3VuLAOL8va2dMf2DkHVYu3TlaN6ad32MuT8SRb4HSakvlPZ-ra2y7Mbk82Nfhxvdqsmkd0V8hjA0_XPkTfH_PtdEHSr8_ldJISxfm4JUBjHos41zwXIk-0FkzzJKKCKqY0JCpXOWgtCy11HoKEQDMeh8B8FSHP-RC9Xnz9zz8dNG12sJ2r_MksGNMopmMahp7FLizlbNM4KLLamVK6c8Zo1iec9QlnfcLZNWGvebloDAD880UUxB7nvyFAeNo</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Yao, Yu</creator><creator>Huang, Yunkai</creator><creator>Peng, Fei</creator><creator>Dong, Jianning</creator><creator>Zhu, Zichong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3569-7752</orcidid><orcidid>https://orcid.org/0000-0003-0363-0828</orcidid><orcidid>https://orcid.org/0000-0003-2214-1472</orcidid><orcidid>https://orcid.org/0000-0001-8811-6873</orcidid><orcidid>https://orcid.org/0000-0001-7008-552X</orcidid></search><sort><creationdate>20220301</creationdate><title>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</title><author>Yao, Yu ; Huang, Yunkai ; Peng, Fei ; Dong, Jianning ; Zhu, Zichong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Active damping</topic><topic>Active damping (AD)</topic><topic>capacitor-current feedback</topic><topic>Capacitors</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Coordinate transformations</topic><topic>Coupling</topic><topic>Damping</topic><topic>Delays</topic><topic>dynamic decoupling</topic><topic>Frequency synchronization</topic><topic>High speed</topic><topic>high-speed surface-mounted permanent magnet synchronous machine (HSPMSM)</topic><topic>Nyquist frequencies</topic><topic>Permanent magnets</topic><topic>Pole placement</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>Synchronous machines</topic><topic>Synchronous motors</topic><topic>synchronous rotating frame</topic><topic>Transient analysis</topic><topic>Transient performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Huang, Yunkai</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Dong, Jianning</creatorcontrib><creatorcontrib>Zhu, Zichong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yao, Yu</au><au>Huang, Yunkai</au><au>Peng, Fei</au><au>Dong, Jianning</au><au>Zhu, Zichong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>37</volume><issue>3</issue><spage>3259</spage><epage>3271</epage><pages>3259-3271</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula> coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula>-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3109157</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3569-7752</orcidid><orcidid>https://orcid.org/0000-0003-0363-0828</orcidid><orcidid>https://orcid.org/0000-0003-2214-1472</orcidid><orcidid>https://orcid.org/0000-0001-8811-6873</orcidid><orcidid>https://orcid.org/0000-0001-7008-552X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-03, Vol.37 (3), p.3259-3271
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9527091
source IEEE Electronic Library (IEL)
subjects Active control
Active damping
Active damping (AD)
capacitor-current feedback
Capacitors
Control methods
Controllers
Coordinate transformations
Coupling
Damping
Delays
dynamic decoupling
Frequency synchronization
High speed
high-speed surface-mounted permanent magnet synchronous machine (HSPMSM)
Nyquist frequencies
Permanent magnets
Pole placement
Resonance
Resonant frequency
Synchronous machines
Synchronous motors
synchronous rotating frame
Transient analysis
Transient performance
title Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic-Decoupled%20Active%20Damping%20Control%20Method%20for%20Improving%20Current%20Transient%20Behavior%20of%20LCL-Equipped%20High-Speed%20PMSMs&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yao,%20Yu&rft.date=2022-03-01&rft.volume=37&rft.issue=3&rft.spage=3259&rft.epage=3271&rft.pages=3259-3271&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3109157&rft_dat=%3Cproquest_RIE%3E2605706044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605706044&rft_id=info:pmid/&rft_ieee_id=9527091&rfr_iscdi=true