Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs
In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchron...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2022-03, Vol.37 (3), p.3259-3271 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3271 |
---|---|
container_issue | 3 |
container_start_page | 3259 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Yao, Yu Huang, Yunkai Peng, Fei Dong, Jianning Zhu, Zichong |
description | In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the {dq} coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the {dq}-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min. |
doi_str_mv | 10.1109/TPEL.2021.3109157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9527091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9527091</ieee_id><sourcerecordid>2605706044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</originalsourceid><addsrcrecordid>eNo9UN9PwjAQbowmIvoHGF-a-Fxs142tjwgoJCOSgM9L196ghK2z20j47-2EeC93l-_HXT6EnhkdMUbF23Y9T0cBDdiI-5VF8Q0aMBEyQhmNb9GAJklEEiH4PXpomgOlLIwoG6Dz7FzJ0igyA2W7-ggaT1RrToBnsqxNtcNTW7XOHvEK2r3VuLAOL8va2dMf2DkHVYu3TlaN6ad32MuT8SRb4HSakvlPZ-ra2y7Mbk82Nfhxvdqsmkd0V8hjA0_XPkTfH_PtdEHSr8_ldJISxfm4JUBjHos41zwXIk-0FkzzJKKCKqY0JCpXOWgtCy11HoKEQDMeh8B8FSHP-RC9Xnz9zz8dNG12sJ2r_MksGNMopmMahp7FLizlbNM4KLLamVK6c8Zo1iec9QlnfcLZNWGvebloDAD880UUxB7nvyFAeNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605706044</pqid></control><display><type>article</type><title>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</title><source>IEEE Electronic Library (IEL)</source><creator>Yao, Yu ; Huang, Yunkai ; Peng, Fei ; Dong, Jianning ; Zhu, Zichong</creator><creatorcontrib>Yao, Yu ; Huang, Yunkai ; Peng, Fei ; Dong, Jianning ; Zhu, Zichong</creatorcontrib><description><![CDATA[In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula> coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula>-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min.]]></description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3109157</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active damping ; Active damping (AD) ; capacitor-current feedback ; Capacitors ; Control methods ; Controllers ; Coordinate transformations ; Coupling ; Damping ; Delays ; dynamic decoupling ; Frequency synchronization ; High speed ; high-speed surface-mounted permanent magnet synchronous machine (HSPMSM) ; Nyquist frequencies ; Permanent magnets ; Pole placement ; Resonance ; Resonant frequency ; Synchronous machines ; Synchronous motors ; synchronous rotating frame ; Transient analysis ; Transient performance</subject><ispartof>IEEE transactions on power electronics, 2022-03, Vol.37 (3), p.3259-3271</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</citedby><cites>FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</cites><orcidid>0000-0003-3569-7752 ; 0000-0003-0363-0828 ; 0000-0003-2214-1472 ; 0000-0001-8811-6873 ; 0000-0001-7008-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9527091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9527091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Huang, Yunkai</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Dong, Jianning</creatorcontrib><creatorcontrib>Zhu, Zichong</creatorcontrib><title>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description><![CDATA[In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula> coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula>-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min.]]></description><subject>Active control</subject><subject>Active damping</subject><subject>Active damping (AD)</subject><subject>capacitor-current feedback</subject><subject>Capacitors</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Coordinate transformations</subject><subject>Coupling</subject><subject>Damping</subject><subject>Delays</subject><subject>dynamic decoupling</subject><subject>Frequency synchronization</subject><subject>High speed</subject><subject>high-speed surface-mounted permanent magnet synchronous machine (HSPMSM)</subject><subject>Nyquist frequencies</subject><subject>Permanent magnets</subject><subject>Pole placement</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>Synchronous machines</subject><subject>Synchronous motors</subject><subject>synchronous rotating frame</subject><subject>Transient analysis</subject><subject>Transient performance</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UN9PwjAQbowmIvoHGF-a-Fxs142tjwgoJCOSgM9L196ghK2z20j47-2EeC93l-_HXT6EnhkdMUbF23Y9T0cBDdiI-5VF8Q0aMBEyQhmNb9GAJklEEiH4PXpomgOlLIwoG6Dz7FzJ0igyA2W7-ggaT1RrToBnsqxNtcNTW7XOHvEK2r3VuLAOL8va2dMf2DkHVYu3TlaN6ad32MuT8SRb4HSakvlPZ-ra2y7Mbk82Nfhxvdqsmkd0V8hjA0_XPkTfH_PtdEHSr8_ldJISxfm4JUBjHos41zwXIk-0FkzzJKKCKqY0JCpXOWgtCy11HoKEQDMeh8B8FSHP-RC9Xnz9zz8dNG12sJ2r_MksGNMopmMahp7FLizlbNM4KLLamVK6c8Zo1iec9QlnfcLZNWGvebloDAD880UUxB7nvyFAeNo</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Yao, Yu</creator><creator>Huang, Yunkai</creator><creator>Peng, Fei</creator><creator>Dong, Jianning</creator><creator>Zhu, Zichong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3569-7752</orcidid><orcidid>https://orcid.org/0000-0003-0363-0828</orcidid><orcidid>https://orcid.org/0000-0003-2214-1472</orcidid><orcidid>https://orcid.org/0000-0001-8811-6873</orcidid><orcidid>https://orcid.org/0000-0001-7008-552X</orcidid></search><sort><creationdate>20220301</creationdate><title>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</title><author>Yao, Yu ; Huang, Yunkai ; Peng, Fei ; Dong, Jianning ; Zhu, Zichong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e073797bd3b99b8dd91d385090c1cde8cbcbeddafdadb4eae2d1374e1111f43b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Active damping</topic><topic>Active damping (AD)</topic><topic>capacitor-current feedback</topic><topic>Capacitors</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Coordinate transformations</topic><topic>Coupling</topic><topic>Damping</topic><topic>Delays</topic><topic>dynamic decoupling</topic><topic>Frequency synchronization</topic><topic>High speed</topic><topic>high-speed surface-mounted permanent magnet synchronous machine (HSPMSM)</topic><topic>Nyquist frequencies</topic><topic>Permanent magnets</topic><topic>Pole placement</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>Synchronous machines</topic><topic>Synchronous motors</topic><topic>synchronous rotating frame</topic><topic>Transient analysis</topic><topic>Transient performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yu</creatorcontrib><creatorcontrib>Huang, Yunkai</creatorcontrib><creatorcontrib>Peng, Fei</creatorcontrib><creatorcontrib>Dong, Jianning</creatorcontrib><creatorcontrib>Zhu, Zichong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yao, Yu</au><au>Huang, Yunkai</au><au>Peng, Fei</au><au>Dong, Jianning</au><au>Zhu, Zichong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>37</volume><issue>3</issue><spage>3259</spage><epage>3271</epage><pages>3259-3271</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract><![CDATA[In this article, a novel dynamic-decoupled active damping current controller is proposed for an LCL -equipped high-speed permanent magnet synchronous machine. Compared with the conventional stationary current-control method for the LCL -type system, the proposed method is established in the synchronous rotating frame for improving the current transient performance. When taking the controller into the synchronous coordinate, there are two following challenges: first, the synchronous resonance frequency varying in a wide range because of the synchronous coordinate transformation, and second, eliminating the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula> coordinate. To address these issues, an improved synchronous capacitor-current-feedback active damping method is designed based on arbitrary pole assignment and is significantly effective for the LCL resonance within the Nyquist frequency. Moreover, a novel dynamic-decoupled motor-current controller is proposed to eliminate the coupling between the <inline-formula><tex-math notation="LaTeX">{dq}</tex-math></inline-formula>-axis motor current. The gain selection method is discussed to acquire sufficient phase margin and gain margin. Finally, the effectiveness of the proposed method is verified by driving the tested motor to 72 kr/min.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3109157</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3569-7752</orcidid><orcidid>https://orcid.org/0000-0003-0363-0828</orcidid><orcidid>https://orcid.org/0000-0003-2214-1472</orcidid><orcidid>https://orcid.org/0000-0001-8811-6873</orcidid><orcidid>https://orcid.org/0000-0001-7008-552X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-03, Vol.37 (3), p.3259-3271 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9527091 |
source | IEEE Electronic Library (IEL) |
subjects | Active control Active damping Active damping (AD) capacitor-current feedback Capacitors Control methods Controllers Coordinate transformations Coupling Damping Delays dynamic decoupling Frequency synchronization High speed high-speed surface-mounted permanent magnet synchronous machine (HSPMSM) Nyquist frequencies Permanent magnets Pole placement Resonance Resonant frequency Synchronous machines Synchronous motors synchronous rotating frame Transient analysis Transient performance |
title | Dynamic-Decoupled Active Damping Control Method for Improving Current Transient Behavior of LCL-Equipped High-Speed PMSMs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic-Decoupled%20Active%20Damping%20Control%20Method%20for%20Improving%20Current%20Transient%20Behavior%20of%20LCL-Equipped%20High-Speed%20PMSMs&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yao,%20Yu&rft.date=2022-03-01&rft.volume=37&rft.issue=3&rft.spage=3259&rft.epage=3271&rft.pages=3259-3271&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3109157&rft_dat=%3Cproquest_RIE%3E2605706044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605706044&rft_id=info:pmid/&rft_ieee_id=9527091&rfr_iscdi=true |