Construction of the Central Arctic Sea Ice Structure and Acoustic Velocity Model at the Short-Term Ice Station During N11 CHINARE
Arctic sea ice is an important factor in the global climate and exerts a significant influence on acoustic propagation in the Arctic marine environment. Because obtaining measurements of the structure and acoustic velocity of sea ice is challenging, particularly on account of the field experimental...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Xing, Junhui Song, Rui Zhen, Sheng Jiang, Xiaodian |
description | Arctic sea ice is an important factor in the global climate and exerts a significant influence on acoustic propagation in the Arctic marine environment. Because obtaining measurements of the structure and acoustic velocity of sea ice is challenging, particularly on account of the field experimental conditions in the 85~^{\circ }\text{N} circle of the Arctic Ocean, the characteristics of the structure and acoustic velocity of sea ice in this region have rarely been reported. In this study, we used ground-penetrating radar (GPR) to detect the structure of the sea ice and a sound velocity meter to test the acoustic velocity of the ice core in the short-term ice station located at 85^{\circ } 28.863^{\prime } N, 179^{\circ } 48.807^{\prime } W during the 11th Chinese National Arctic Research Expedition. The ice core was located in the middle of the GPR lines. The structure and acoustic velocity of the sea ice model within the 85° circle of the Arctic Ocean were established on the basis of the data processing results. The model revealed the fine structural characteristics and vertical acoustic velocity distribution of the sea ice within the 85° circle of the Arctic Ocean in summer. This model may serve as an important reference for future research on the coupling of global sea ice and climate, as well as acoustic propagation characteristics, in the Arctic Ocean environment. |
doi_str_mv | 10.1109/TGRS.2021.3107363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9526885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9526885</ieee_id><sourcerecordid>2623470515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-788c2601cdf69ab54b4d032bf65863696c67814fad28999522fa4a9e431b9ff83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHr9iL6vwaKVSpLawjVzHpkElBsdZsOTPSR9iNdLMvXdmDkLXQEYARN-tnhbLESUURgxIziQ7QQMQQmVEcn6KBgS0zKjS9BxdtO0HIcAF5AP0W4SmTbGzqQ4NDh6njcOFa1I0WzyOfdvipTN4ah1e7nVddNg0FR7b0LW78ZvbBlunH_wcKrfFJu0zlpsQU7Zy8fPoNfsN912sm3c8B8DFZDofLx4u0Zk329ZdHesQvT4-rIpJNnt5mhbjWWapZinLlbJUErCVl9qsBV_zijC69lIoyaSWVuYKuDdV_6XWglJvuNGOM1hr7xUbottD7lcM351rU_kRutj0K0sqKeM5ESB6FRxUNoa2jc6XX7H-NPGnBFLuSJc70uWOdHkk3XtuDp7aOfev70-QSgn2Bx6QeKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470515</pqid></control><display><type>article</type><title>Construction of the Central Arctic Sea Ice Structure and Acoustic Velocity Model at the Short-Term Ice Station During N11 CHINARE</title><source>IEEE Electronic Library (IEL)</source><creator>Xing, Junhui ; Song, Rui ; Zhen, Sheng ; Jiang, Xiaodian</creator><creatorcontrib>Xing, Junhui ; Song, Rui ; Zhen, Sheng ; Jiang, Xiaodian</creatorcontrib><description><![CDATA[Arctic sea ice is an important factor in the global climate and exerts a significant influence on acoustic propagation in the Arctic marine environment. Because obtaining measurements of the structure and acoustic velocity of sea ice is challenging, particularly on account of the field experimental conditions in the <inline-formula> <tex-math notation="LaTeX">85~^{\circ }\text{N} </tex-math></inline-formula> circle of the Arctic Ocean, the characteristics of the structure and acoustic velocity of sea ice in this region have rarely been reported. In this study, we used ground-penetrating radar (GPR) to detect the structure of the sea ice and a sound velocity meter to test the acoustic velocity of the ice core in the short-term ice station located at <inline-formula> <tex-math notation="LaTeX">85^{\circ } 28.863^{\prime } </tex-math></inline-formula> N, <inline-formula> <tex-math notation="LaTeX">179^{\circ } 48.807^{\prime } </tex-math></inline-formula> W during the 11th Chinese National Arctic Research Expedition. The ice core was located in the middle of the GPR lines. The structure and acoustic velocity of the sea ice model within the 85° circle of the Arctic Ocean were established on the basis of the data processing results. The model revealed the fine structural characteristics and vertical acoustic velocity distribution of the sea ice within the 85° circle of the Arctic Ocean in summer. This model may serve as an important reference for future research on the coupling of global sea ice and climate, as well as acoustic propagation characteristics, in the Arctic Ocean environment.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3107363</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic measurements ; Acoustic propagation ; Acoustic velocity ; Acoustics ; Arctic ; Arctic environments ; Arctic sea ice ; Climate ; Data analysis ; Data processing ; Expeditions ; Global climate ; Ground penetrating radar ; ground-penetrating radar (GPR) ; Ice environments ; Marine environment ; Meters ; Offshore structures ; Radar ; Research expeditions ; Sea ice ; sea ice structure ; Sea measurements ; Sound velocity ; Velocity ; Velocity distribution ; Velocity measurement ; Vertical distribution</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-788c2601cdf69ab54b4d032bf65863696c67814fad28999522fa4a9e431b9ff83</citedby><cites>FETCH-LOGICAL-c293t-788c2601cdf69ab54b4d032bf65863696c67814fad28999522fa4a9e431b9ff83</cites><orcidid>0000-0002-2608-0366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9526885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9526885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Junhui</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Zhen, Sheng</creatorcontrib><creatorcontrib>Jiang, Xiaodian</creatorcontrib><title>Construction of the Central Arctic Sea Ice Structure and Acoustic Velocity Model at the Short-Term Ice Station During N11 CHINARE</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Arctic sea ice is an important factor in the global climate and exerts a significant influence on acoustic propagation in the Arctic marine environment. Because obtaining measurements of the structure and acoustic velocity of sea ice is challenging, particularly on account of the field experimental conditions in the <inline-formula> <tex-math notation="LaTeX">85~^{\circ }\text{N} </tex-math></inline-formula> circle of the Arctic Ocean, the characteristics of the structure and acoustic velocity of sea ice in this region have rarely been reported. In this study, we used ground-penetrating radar (GPR) to detect the structure of the sea ice and a sound velocity meter to test the acoustic velocity of the ice core in the short-term ice station located at <inline-formula> <tex-math notation="LaTeX">85^{\circ } 28.863^{\prime } </tex-math></inline-formula> N, <inline-formula> <tex-math notation="LaTeX">179^{\circ } 48.807^{\prime } </tex-math></inline-formula> W during the 11th Chinese National Arctic Research Expedition. The ice core was located in the middle of the GPR lines. The structure and acoustic velocity of the sea ice model within the 85° circle of the Arctic Ocean were established on the basis of the data processing results. The model revealed the fine structural characteristics and vertical acoustic velocity distribution of the sea ice within the 85° circle of the Arctic Ocean in summer. This model may serve as an important reference for future research on the coupling of global sea ice and climate, as well as acoustic propagation characteristics, in the Arctic Ocean environment.]]></description><subject>Acoustic measurements</subject><subject>Acoustic propagation</subject><subject>Acoustic velocity</subject><subject>Acoustics</subject><subject>Arctic</subject><subject>Arctic environments</subject><subject>Arctic sea ice</subject><subject>Climate</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Expeditions</subject><subject>Global climate</subject><subject>Ground penetrating radar</subject><subject>ground-penetrating radar (GPR)</subject><subject>Ice environments</subject><subject>Marine environment</subject><subject>Meters</subject><subject>Offshore structures</subject><subject>Radar</subject><subject>Research expeditions</subject><subject>Sea ice</subject><subject>sea ice structure</subject><subject>Sea measurements</subject><subject>Sound velocity</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity measurement</subject><subject>Vertical distribution</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHr9iL6vwaKVSpLawjVzHpkElBsdZsOTPSR9iNdLMvXdmDkLXQEYARN-tnhbLESUURgxIziQ7QQMQQmVEcn6KBgS0zKjS9BxdtO0HIcAF5AP0W4SmTbGzqQ4NDh6njcOFa1I0WzyOfdvipTN4ah1e7nVddNg0FR7b0LW78ZvbBlunH_wcKrfFJu0zlpsQU7Zy8fPoNfsN912sm3c8B8DFZDofLx4u0Zk329ZdHesQvT4-rIpJNnt5mhbjWWapZinLlbJUErCVl9qsBV_zijC69lIoyaSWVuYKuDdV_6XWglJvuNGOM1hr7xUbottD7lcM351rU_kRutj0K0sqKeM5ESB6FRxUNoa2jc6XX7H-NPGnBFLuSJc70uWOdHkk3XtuDp7aOfev70-QSgn2Bx6QeKQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xing, Junhui</creator><creator>Song, Rui</creator><creator>Zhen, Sheng</creator><creator>Jiang, Xiaodian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2608-0366</orcidid></search><sort><creationdate>2022</creationdate><title>Construction of the Central Arctic Sea Ice Structure and Acoustic Velocity Model at the Short-Term Ice Station During N11 CHINARE</title><author>Xing, Junhui ; Song, Rui ; Zhen, Sheng ; Jiang, Xiaodian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-788c2601cdf69ab54b4d032bf65863696c67814fad28999522fa4a9e431b9ff83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic measurements</topic><topic>Acoustic propagation</topic><topic>Acoustic velocity</topic><topic>Acoustics</topic><topic>Arctic</topic><topic>Arctic environments</topic><topic>Arctic sea ice</topic><topic>Climate</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Expeditions</topic><topic>Global climate</topic><topic>Ground penetrating radar</topic><topic>ground-penetrating radar (GPR)</topic><topic>Ice environments</topic><topic>Marine environment</topic><topic>Meters</topic><topic>Offshore structures</topic><topic>Radar</topic><topic>Research expeditions</topic><topic>Sea ice</topic><topic>sea ice structure</topic><topic>Sea measurements</topic><topic>Sound velocity</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity measurement</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Junhui</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Zhen, Sheng</creatorcontrib><creatorcontrib>Jiang, Xiaodian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Junhui</au><au>Song, Rui</au><au>Zhen, Sheng</au><au>Jiang, Xiaodian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of the Central Arctic Sea Ice Structure and Acoustic Velocity Model at the Short-Term Ice Station During N11 CHINARE</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Arctic sea ice is an important factor in the global climate and exerts a significant influence on acoustic propagation in the Arctic marine environment. Because obtaining measurements of the structure and acoustic velocity of sea ice is challenging, particularly on account of the field experimental conditions in the <inline-formula> <tex-math notation="LaTeX">85~^{\circ }\text{N} </tex-math></inline-formula> circle of the Arctic Ocean, the characteristics of the structure and acoustic velocity of sea ice in this region have rarely been reported. In this study, we used ground-penetrating radar (GPR) to detect the structure of the sea ice and a sound velocity meter to test the acoustic velocity of the ice core in the short-term ice station located at <inline-formula> <tex-math notation="LaTeX">85^{\circ } 28.863^{\prime } </tex-math></inline-formula> N, <inline-formula> <tex-math notation="LaTeX">179^{\circ } 48.807^{\prime } </tex-math></inline-formula> W during the 11th Chinese National Arctic Research Expedition. The ice core was located in the middle of the GPR lines. The structure and acoustic velocity of the sea ice model within the 85° circle of the Arctic Ocean were established on the basis of the data processing results. The model revealed the fine structural characteristics and vertical acoustic velocity distribution of the sea ice within the 85° circle of the Arctic Ocean in summer. This model may serve as an important reference for future research on the coupling of global sea ice and climate, as well as acoustic propagation characteristics, in the Arctic Ocean environment.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3107363</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2608-0366</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-7 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9526885 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic measurements Acoustic propagation Acoustic velocity Acoustics Arctic Arctic environments Arctic sea ice Climate Data analysis Data processing Expeditions Global climate Ground penetrating radar ground-penetrating radar (GPR) Ice environments Marine environment Meters Offshore structures Radar Research expeditions Sea ice sea ice structure Sea measurements Sound velocity Velocity Velocity distribution Velocity measurement Vertical distribution |
title | Construction of the Central Arctic Sea Ice Structure and Acoustic Velocity Model at the Short-Term Ice Station During N11 CHINARE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20the%20Central%20Arctic%20Sea%20Ice%20Structure%20and%20Acoustic%20Velocity%20Model%20at%20the%20Short-Term%20Ice%20Station%20During%20N11%20CHINARE&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xing,%20Junhui&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3107363&rft_dat=%3Cproquest_RIE%3E2623470515%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623470515&rft_id=info:pmid/&rft_ieee_id=9526885&rfr_iscdi=true |