Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators
The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been int...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2001-09, Vol.37 (5), p.3618-3621 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3621 |
---|---|
container_issue | 5 |
container_start_page | 3618 |
container_title | IEEE transactions on magnetics |
container_volume | 37 |
creator | Tsekouras, G. Kiartzis, S. Kladas, A.G. Tegopoulos, J.A. |
description | The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement. |
doi_str_mv | 10.1109/20.952675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_952675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>952675</ieee_id><sourcerecordid>1671302185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</originalsourceid><addsrcrecordid>eNqN0k9vFCEUAHBiNHGtHrx6IsYYPUzl3zBwbBqrJo1e9DwB5tFSZ2AEVrN-BD912exGEw_aEyH8eDzeewg9peSUUqLfMHKqeyaH_h7aUC1oR4jU99GGEKo6LaR4iB6VctO2oqdkg359hG02M45Qf6T8FZt1zcm4a-zSspoME64JF4gl1PA91B020cy7Egq2prTTFLEPMVTAMMMCseIK7jqGb1vAPmWc1hqW8NPU0GTyeIW8mLh3i7lqj-IriJBNTbk8Rg-8mQs8Oa4n6MvF28_n77vLT-8-nJ9ddk5IWjvvuFA9mbRUvdBqkpIINXmtlbfGDdY6DZ71UgstmJKUDZMFy62yVgzOD_wEvTzEbT9taZY6LqE4mOeWV9qWkalBci7IHaAQlPP-_1Aq3uq9h6_-CakcKCeMqjtQwinTauD7PJ__RW_SNrc-lVEpoRhvnW7o9QG5nErJ4Mc1h8XkXYs07kdnZGQ8jE6zL44BTXFm9tlEF8qfC5S1yuvGnh1YAIDfp8cYt50qzFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884823510</pqid></control><display><type>article</type><title>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</title><source>IEEE Electronic Library (IEL)</source><creator>Tsekouras, G. ; Kiartzis, S. ; Kladas, A.G. ; Tegopoulos, J.A.</creator><creatorcontrib>Tsekouras, G. ; Kiartzis, S. ; Kladas, A.G. ; Tegopoulos, J.A.</creatorcontrib><description>The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.952675</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Design optimization ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Feedforward neural networks ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Generators ; Magnetism ; Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems ; Mathematical analysis ; Neodymium alloys ; Neural networks ; Optimization ; Permanent magnets ; Physics ; Prototypes ; Rotors ; Sensitivity analysis ; Shape memory alloys ; Wind turbines</subject><ispartof>IEEE transactions on magnetics, 2001-09, Vol.37 (5), p.3618-3621</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</citedby><cites>FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/952675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,798,23937,23938,25147,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/952675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1125499$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsekouras, G.</creatorcontrib><creatorcontrib>Kiartzis, S.</creatorcontrib><creatorcontrib>Kladas, A.G.</creatorcontrib><creatorcontrib>Tegopoulos, J.A.</creatorcontrib><title>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement.</description><subject>Applied classical electromagnetism</subject><subject>Design optimization</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Feedforward neural networks</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Generators</subject><subject>Magnetism</subject><subject>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</subject><subject>Mathematical analysis</subject><subject>Neodymium alloys</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Rotors</subject><subject>Sensitivity analysis</subject><subject>Shape memory alloys</subject><subject>Wind turbines</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0k9vFCEUAHBiNHGtHrx6IsYYPUzl3zBwbBqrJo1e9DwB5tFSZ2AEVrN-BD912exGEw_aEyH8eDzeewg9peSUUqLfMHKqeyaH_h7aUC1oR4jU99GGEKo6LaR4iB6VctO2oqdkg359hG02M45Qf6T8FZt1zcm4a-zSspoME64JF4gl1PA91B020cy7Egq2prTTFLEPMVTAMMMCseIK7jqGb1vAPmWc1hqW8NPU0GTyeIW8mLh3i7lqj-IriJBNTbk8Rg-8mQs8Oa4n6MvF28_n77vLT-8-nJ9ddk5IWjvvuFA9mbRUvdBqkpIINXmtlbfGDdY6DZ71UgstmJKUDZMFy62yVgzOD_wEvTzEbT9taZY6LqE4mOeWV9qWkalBci7IHaAQlPP-_1Aq3uq9h6_-CakcKCeMqjtQwinTauD7PJ__RW_SNrc-lVEpoRhvnW7o9QG5nErJ4Mc1h8XkXYs07kdnZGQ8jE6zL44BTXFm9tlEF8qfC5S1yuvGnh1YAIDfp8cYt50qzFQ</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Tsekouras, G.</creator><creator>Kiartzis, S.</creator><creator>Kladas, A.G.</creator><creator>Tegopoulos, J.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20010901</creationdate><title>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</title><author>Tsekouras, G. ; Kiartzis, S. ; Kladas, A.G. ; Tegopoulos, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied classical electromagnetism</topic><topic>Design optimization</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Feedforward neural networks</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Generators</topic><topic>Magnetism</topic><topic>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</topic><topic>Mathematical analysis</topic><topic>Neodymium alloys</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Rotors</topic><topic>Sensitivity analysis</topic><topic>Shape memory alloys</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsekouras, G.</creatorcontrib><creatorcontrib>Kiartzis, S.</creatorcontrib><creatorcontrib>Kladas, A.G.</creatorcontrib><creatorcontrib>Tegopoulos, J.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsekouras, G.</au><au>Kiartzis, S.</au><au>Kladas, A.G.</au><au>Tegopoulos, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>37</volume><issue>5</issue><spage>3618</spage><epage>3621</epage><pages>3618-3621</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.952675</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2001-09, Vol.37 (5), p.3618-3621 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_952675 |
source | IEEE Electronic Library (IEL) |
subjects | Applied classical electromagnetism Design optimization Electromagnetism electron and ion optics Exact sciences and technology Feedforward neural networks Finite element method Fundamental areas of phenomenology (including applications) Generators Magnetism Magnetostatics magnetic shielding, magnetic induction, boundary-value problems Mathematical analysis Neodymium alloys Neural networks Optimization Permanent magnets Physics Prototypes Rotors Sensitivity analysis Shape memory alloys Wind turbines |
title | Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20approach%20compared%20to%20sensitivity%20analysis%20based%20on%20finite%20element%20technique%20for%20optimization%20of%20permanent%20magnet%20generators&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Tsekouras,%20G.&rft.date=2001-09-01&rft.volume=37&rft.issue=5&rft.spage=3618&rft.epage=3621&rft.pages=3618-3621&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.952675&rft_dat=%3Cproquest_RIE%3E1671302185%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884823510&rft_id=info:pmid/&rft_ieee_id=952675&rfr_iscdi=true |