Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators

The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2001-09, Vol.37 (5), p.3618-3621
Hauptverfasser: Tsekouras, G., Kiartzis, S., Kladas, A.G., Tegopoulos, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3621
container_issue 5
container_start_page 3618
container_title IEEE transactions on magnetics
container_volume 37
creator Tsekouras, G.
Kiartzis, S.
Kladas, A.G.
Tegopoulos, J.A.
description The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement.
doi_str_mv 10.1109/20.952675
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_952675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>952675</ieee_id><sourcerecordid>1671302185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</originalsourceid><addsrcrecordid>eNqN0k9vFCEUAHBiNHGtHrx6IsYYPUzl3zBwbBqrJo1e9DwB5tFSZ2AEVrN-BD912exGEw_aEyH8eDzeewg9peSUUqLfMHKqeyaH_h7aUC1oR4jU99GGEKo6LaR4iB6VctO2oqdkg359hG02M45Qf6T8FZt1zcm4a-zSspoME64JF4gl1PA91B020cy7Egq2prTTFLEPMVTAMMMCseIK7jqGb1vAPmWc1hqW8NPU0GTyeIW8mLh3i7lqj-IriJBNTbk8Rg-8mQs8Oa4n6MvF28_n77vLT-8-nJ9ddk5IWjvvuFA9mbRUvdBqkpIINXmtlbfGDdY6DZ71UgstmJKUDZMFy62yVgzOD_wEvTzEbT9taZY6LqE4mOeWV9qWkalBci7IHaAQlPP-_1Aq3uq9h6_-CakcKCeMqjtQwinTauD7PJ__RW_SNrc-lVEpoRhvnW7o9QG5nErJ4Mc1h8XkXYs07kdnZGQ8jE6zL44BTXFm9tlEF8qfC5S1yuvGnh1YAIDfp8cYt50qzFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884823510</pqid></control><display><type>article</type><title>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</title><source>IEEE Electronic Library (IEL)</source><creator>Tsekouras, G. ; Kiartzis, S. ; Kladas, A.G. ; Tegopoulos, J.A.</creator><creatorcontrib>Tsekouras, G. ; Kiartzis, S. ; Kladas, A.G. ; Tegopoulos, J.A.</creatorcontrib><description>The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.952675</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Design optimization ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Feedforward neural networks ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Generators ; Magnetism ; Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems ; Mathematical analysis ; Neodymium alloys ; Neural networks ; Optimization ; Permanent magnets ; Physics ; Prototypes ; Rotors ; Sensitivity analysis ; Shape memory alloys ; Wind turbines</subject><ispartof>IEEE transactions on magnetics, 2001-09, Vol.37 (5), p.3618-3621</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</citedby><cites>FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/952675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,798,23937,23938,25147,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/952675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1125499$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsekouras, G.</creatorcontrib><creatorcontrib>Kiartzis, S.</creatorcontrib><creatorcontrib>Kladas, A.G.</creatorcontrib><creatorcontrib>Tegopoulos, J.A.</creatorcontrib><title>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement.</description><subject>Applied classical electromagnetism</subject><subject>Design optimization</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Feedforward neural networks</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Generators</subject><subject>Magnetism</subject><subject>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</subject><subject>Mathematical analysis</subject><subject>Neodymium alloys</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Rotors</subject><subject>Sensitivity analysis</subject><subject>Shape memory alloys</subject><subject>Wind turbines</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0k9vFCEUAHBiNHGtHrx6IsYYPUzl3zBwbBqrJo1e9DwB5tFSZ2AEVrN-BD912exGEw_aEyH8eDzeewg9peSUUqLfMHKqeyaH_h7aUC1oR4jU99GGEKo6LaR4iB6VctO2oqdkg359hG02M45Qf6T8FZt1zcm4a-zSspoME64JF4gl1PA91B020cy7Egq2prTTFLEPMVTAMMMCseIK7jqGb1vAPmWc1hqW8NPU0GTyeIW8mLh3i7lqj-IriJBNTbk8Rg-8mQs8Oa4n6MvF28_n77vLT-8-nJ9ddk5IWjvvuFA9mbRUvdBqkpIINXmtlbfGDdY6DZ71UgstmJKUDZMFy62yVgzOD_wEvTzEbT9taZY6LqE4mOeWV9qWkalBci7IHaAQlPP-_1Aq3uq9h6_-CakcKCeMqjtQwinTauD7PJ__RW_SNrc-lVEpoRhvnW7o9QG5nErJ4Mc1h8XkXYs07kdnZGQ8jE6zL44BTXFm9tlEF8qfC5S1yuvGnh1YAIDfp8cYt50qzFQ</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Tsekouras, G.</creator><creator>Kiartzis, S.</creator><creator>Kladas, A.G.</creator><creator>Tegopoulos, J.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20010901</creationdate><title>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</title><author>Tsekouras, G. ; Kiartzis, S. ; Kladas, A.G. ; Tegopoulos, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-fc34850d9685498d66048df998fbac7bbc9ef2569494286127dbeb3b8bb47cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied classical electromagnetism</topic><topic>Design optimization</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Feedforward neural networks</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Generators</topic><topic>Magnetism</topic><topic>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</topic><topic>Mathematical analysis</topic><topic>Neodymium alloys</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Rotors</topic><topic>Sensitivity analysis</topic><topic>Shape memory alloys</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsekouras, G.</creatorcontrib><creatorcontrib>Kiartzis, S.</creatorcontrib><creatorcontrib>Kladas, A.G.</creatorcontrib><creatorcontrib>Tegopoulos, J.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsekouras, G.</au><au>Kiartzis, S.</au><au>Kladas, A.G.</au><au>Tegopoulos, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>37</volume><issue>5</issue><spage>3618</spage><epage>3621</epage><pages>3618-3621</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The paper presents the optimization procedure of a permanent magnet generator for a 20 kW wind turbine prototype "Peripheral" neodymium alloy magnet rotor structure has been considered to perform the optimal shape design. A fully connected four layer feedforward neural network has been introduced and compared to a technique based on the finite element method and sensitivity analysis. The considered methods are in very good agreement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.952675</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2001-09, Vol.37 (5), p.3618-3621
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_952675
source IEEE Electronic Library (IEL)
subjects Applied classical electromagnetism
Design optimization
Electromagnetism
electron and ion optics
Exact sciences and technology
Feedforward neural networks
Finite element method
Fundamental areas of phenomenology (including applications)
Generators
Magnetism
Magnetostatics
magnetic shielding, magnetic induction, boundary-value problems
Mathematical analysis
Neodymium alloys
Neural networks
Optimization
Permanent magnets
Physics
Prototypes
Rotors
Sensitivity analysis
Shape memory alloys
Wind turbines
title Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20approach%20compared%20to%20sensitivity%20analysis%20based%20on%20finite%20element%20technique%20for%20optimization%20of%20permanent%20magnet%20generators&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Tsekouras,%20G.&rft.date=2001-09-01&rft.volume=37&rft.issue=5&rft.spage=3618&rft.epage=3621&rft.pages=3618-3621&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.952675&rft_dat=%3Cproquest_RIE%3E1671302185%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884823510&rft_id=info:pmid/&rft_ieee_id=952675&rfr_iscdi=true