Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid

Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned asse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2022-01, Vol.13 (1), p.122-134
Hauptverfasser: Dong, Jiaojiao, Zhu, Lin, Dong, Qihuan, Kritprajun, Paychuda, Liu, Yunting, Liu, Yilu, Tolbert, Leon M., Hambrick, Joshua C., Xue, Yaosuo Sonny, Ollis, T. Ben, Bhattarai, Bishnu P., Schneider, Kevin P., Laval, Stuart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1
container_start_page 122
container_title IEEE transactions on sustainable energy
container_volume 13
creator Dong, Jiaojiao
Zhu, Lin
Dong, Qihuan
Kritprajun, Paychuda
Liu, Yunting
Liu, Yilu
Tolbert, Leon M.
Hambrick, Joshua C.
Xue, Yaosuo Sonny
Ollis, T. Ben
Bhattarai, Bishnu P.
Schneider, Kevin P.
Laval, Stuart
description Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%.
doi_str_mv 10.1109/TSTE.2021.3105125
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9516897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9516897</ieee_id><sourcerecordid>2610982724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhYMoWGp_gPiy4HPq3nLZR6nRFiqCjfgYdtNJ3JImdXdTyL93Y0vnZQbmnDPDFwT3BM8JweIp3-TZnGJK5ozgiNDoKpgQwUXIMEuuLzMVt8HM2h32xRiLGZ4Eh1XroDbS6bZGuZGtlaXTR0BZC6YekF936BMaLZVutBtQdpRN7-Vdi6rOIIk20FThEmQzJrxo64xW_f9-M1gHe_St3Q9616XpaqO3d8FNJRsLs3OfBl-vWb5YhuuPt9XieR2W_jMXRoKkSqaKUswpA6CcyqgkWy6SeMsrVqoKM6kqnnAAnFZcUsZUCSxKlZAQs2nweMo9mO63B-uKXdeb1p8saOyhpTSh3KvISeW_s9ZAVRyM3kszFAQXI9tiZFuMbIszW-95OHk0AFz0IiJxKhL2BwZ2dpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610982724</pqid></control><display><type>article</type><title>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Jiaojiao ; Zhu, Lin ; Dong, Qihuan ; Kritprajun, Paychuda ; Liu, Yunting ; Liu, Yilu ; Tolbert, Leon M. ; Hambrick, Joshua C. ; Xue, Yaosuo Sonny ; Ollis, T. Ben ; Bhattarai, Bishnu P. ; Schneider, Kevin P. ; Laval, Stuart</creator><creatorcontrib>Dong, Jiaojiao ; Zhu, Lin ; Dong, Qihuan ; Kritprajun, Paychuda ; Liu, Yunting ; Liu, Yilu ; Tolbert, Leon M. ; Hambrick, Joshua C. ; Xue, Yaosuo Sonny ; Ollis, T. Ben ; Bhattarai, Bishnu P. ; Schneider, Kevin P. ; Laval, Stuart</creatorcontrib><description>Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2021.3105125</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Distributed generation ; Electric potential ; Energy distribution ; Energy resources ; Energy sources ; Mathematical model ; Microgrids ; Monte Carlo simulation ; Network reliability ; Nonutility generation ; Power control ; power distribution ; Power flow ; power system economics ; power system reliability ; power system restoration ; Reactive power ; Reconfiguration ; Reliability ; Reliability analysis ; Resilience ; Service restoration ; System reliability ; Transactive energy ; Voltage</subject><ispartof>IEEE transactions on sustainable energy, 2022-01, Vol.13 (1), p.122-134</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</citedby><cites>FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</cites><orcidid>0000-0001-7777-7043 ; 0000-0003-0731-6924 ; 0000-0002-7285-609X ; 0000-0003-1749-5014 ; 0000-0002-4912-9660 ; 0000-0002-6707-9062 ; 0000-0001-9016-4268 ; 0000-0001-5222-0660 ; 0000-0002-9849-6010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9516897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9516897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Jiaojiao</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Qihuan</creatorcontrib><creatorcontrib>Kritprajun, Paychuda</creatorcontrib><creatorcontrib>Liu, Yunting</creatorcontrib><creatorcontrib>Liu, Yilu</creatorcontrib><creatorcontrib>Tolbert, Leon M.</creatorcontrib><creatorcontrib>Hambrick, Joshua C.</creatorcontrib><creatorcontrib>Xue, Yaosuo Sonny</creatorcontrib><creatorcontrib>Ollis, T. Ben</creatorcontrib><creatorcontrib>Bhattarai, Bishnu P.</creatorcontrib><creatorcontrib>Schneider, Kevin P.</creatorcontrib><creatorcontrib>Laval, Stuart</creatorcontrib><title>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%.</description><subject>Batteries</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Energy distribution</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Mathematical model</subject><subject>Microgrids</subject><subject>Monte Carlo simulation</subject><subject>Network reliability</subject><subject>Nonutility generation</subject><subject>Power control</subject><subject>power distribution</subject><subject>Power flow</subject><subject>power system economics</subject><subject>power system reliability</subject><subject>power system restoration</subject><subject>Reactive power</subject><subject>Reconfiguration</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Resilience</subject><subject>Service restoration</subject><subject>System reliability</subject><subject>Transactive energy</subject><subject>Voltage</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhYMoWGp_gPiy4HPq3nLZR6nRFiqCjfgYdtNJ3JImdXdTyL93Y0vnZQbmnDPDFwT3BM8JweIp3-TZnGJK5ozgiNDoKpgQwUXIMEuuLzMVt8HM2h32xRiLGZ4Eh1XroDbS6bZGuZGtlaXTR0BZC6YekF936BMaLZVutBtQdpRN7-Vdi6rOIIk20FThEmQzJrxo64xW_f9-M1gHe_St3Q9616XpaqO3d8FNJRsLs3OfBl-vWb5YhuuPt9XieR2W_jMXRoKkSqaKUswpA6CcyqgkWy6SeMsrVqoKM6kqnnAAnFZcUsZUCSxKlZAQs2nweMo9mO63B-uKXdeb1p8saOyhpTSh3KvISeW_s9ZAVRyM3kszFAQXI9tiZFuMbIszW-95OHk0AFz0IiJxKhL2BwZ2dpU</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Dong, Jiaojiao</creator><creator>Zhu, Lin</creator><creator>Dong, Qihuan</creator><creator>Kritprajun, Paychuda</creator><creator>Liu, Yunting</creator><creator>Liu, Yilu</creator><creator>Tolbert, Leon M.</creator><creator>Hambrick, Joshua C.</creator><creator>Xue, Yaosuo Sonny</creator><creator>Ollis, T. Ben</creator><creator>Bhattarai, Bishnu P.</creator><creator>Schneider, Kevin P.</creator><creator>Laval, Stuart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7777-7043</orcidid><orcidid>https://orcid.org/0000-0003-0731-6924</orcidid><orcidid>https://orcid.org/0000-0002-7285-609X</orcidid><orcidid>https://orcid.org/0000-0003-1749-5014</orcidid><orcidid>https://orcid.org/0000-0002-4912-9660</orcidid><orcidid>https://orcid.org/0000-0002-6707-9062</orcidid><orcidid>https://orcid.org/0000-0001-9016-4268</orcidid><orcidid>https://orcid.org/0000-0001-5222-0660</orcidid><orcidid>https://orcid.org/0000-0002-9849-6010</orcidid></search><sort><creationdate>202201</creationdate><title>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</title><author>Dong, Jiaojiao ; Zhu, Lin ; Dong, Qihuan ; Kritprajun, Paychuda ; Liu, Yunting ; Liu, Yilu ; Tolbert, Leon M. ; Hambrick, Joshua C. ; Xue, Yaosuo Sonny ; Ollis, T. Ben ; Bhattarai, Bishnu P. ; Schneider, Kevin P. ; Laval, Stuart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Energy distribution</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Mathematical model</topic><topic>Microgrids</topic><topic>Monte Carlo simulation</topic><topic>Network reliability</topic><topic>Nonutility generation</topic><topic>Power control</topic><topic>power distribution</topic><topic>Power flow</topic><topic>power system economics</topic><topic>power system reliability</topic><topic>power system restoration</topic><topic>Reactive power</topic><topic>Reconfiguration</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Resilience</topic><topic>Service restoration</topic><topic>System reliability</topic><topic>Transactive energy</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jiaojiao</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Qihuan</creatorcontrib><creatorcontrib>Kritprajun, Paychuda</creatorcontrib><creatorcontrib>Liu, Yunting</creatorcontrib><creatorcontrib>Liu, Yilu</creatorcontrib><creatorcontrib>Tolbert, Leon M.</creatorcontrib><creatorcontrib>Hambrick, Joshua C.</creatorcontrib><creatorcontrib>Xue, Yaosuo Sonny</creatorcontrib><creatorcontrib>Ollis, T. Ben</creatorcontrib><creatorcontrib>Bhattarai, Bishnu P.</creatorcontrib><creatorcontrib>Schneider, Kevin P.</creatorcontrib><creatorcontrib>Laval, Stuart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jiaojiao</au><au>Zhu, Lin</au><au>Dong, Qihuan</au><au>Kritprajun, Paychuda</au><au>Liu, Yunting</au><au>Liu, Yilu</au><au>Tolbert, Leon M.</au><au>Hambrick, Joshua C.</au><au>Xue, Yaosuo Sonny</au><au>Ollis, T. Ben</au><au>Bhattarai, Bishnu P.</au><au>Schneider, Kevin P.</au><au>Laval, Stuart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2022-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>122</spage><epage>134</epage><pages>122-134</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2021.3105125</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7777-7043</orcidid><orcidid>https://orcid.org/0000-0003-0731-6924</orcidid><orcidid>https://orcid.org/0000-0002-7285-609X</orcidid><orcidid>https://orcid.org/0000-0003-1749-5014</orcidid><orcidid>https://orcid.org/0000-0002-4912-9660</orcidid><orcidid>https://orcid.org/0000-0002-6707-9062</orcidid><orcidid>https://orcid.org/0000-0001-9016-4268</orcidid><orcidid>https://orcid.org/0000-0001-5222-0660</orcidid><orcidid>https://orcid.org/0000-0002-9849-6010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2022-01, Vol.13 (1), p.122-134
issn 1949-3029
1949-3037
language eng
recordid cdi_ieee_primary_9516897
source IEEE Electronic Library (IEL)
subjects Batteries
Distributed generation
Electric potential
Energy distribution
Energy resources
Energy sources
Mathematical model
Microgrids
Monte Carlo simulation
Network reliability
Nonutility generation
Power control
power distribution
Power flow
power system economics
power system reliability
power system restoration
Reactive power
Reconfiguration
Reliability
Reliability analysis
Resilience
Service restoration
System reliability
Transactive energy
Voltage
title Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Transactive%20Energy%20Into%20Reliability%20Evaluation%20for%20a%20Self-Healing%20Distribution%20System%20With%20Microgrid&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Dong,%20Jiaojiao&rft.date=2022-01&rft.volume=13&rft.issue=1&rft.spage=122&rft.epage=134&rft.pages=122-134&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2021.3105125&rft_dat=%3Cproquest_RIE%3E2610982724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610982724&rft_id=info:pmid/&rft_ieee_id=9516897&rfr_iscdi=true