Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid
Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned asse...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable energy 2022-01, Vol.13 (1), p.122-134 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | 1 |
container_start_page | 122 |
container_title | IEEE transactions on sustainable energy |
container_volume | 13 |
creator | Dong, Jiaojiao Zhu, Lin Dong, Qihuan Kritprajun, Paychuda Liu, Yunting Liu, Yilu Tolbert, Leon M. Hambrick, Joshua C. Xue, Yaosuo Sonny Ollis, T. Ben Bhattarai, Bishnu P. Schneider, Kevin P. Laval, Stuart |
description | Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%. |
doi_str_mv | 10.1109/TSTE.2021.3105125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9516897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9516897</ieee_id><sourcerecordid>2610982724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhYMoWGp_gPiy4HPq3nLZR6nRFiqCjfgYdtNJ3JImdXdTyL93Y0vnZQbmnDPDFwT3BM8JweIp3-TZnGJK5ozgiNDoKpgQwUXIMEuuLzMVt8HM2h32xRiLGZ4Eh1XroDbS6bZGuZGtlaXTR0BZC6YekF936BMaLZVutBtQdpRN7-Vdi6rOIIk20FThEmQzJrxo64xW_f9-M1gHe_St3Q9616XpaqO3d8FNJRsLs3OfBl-vWb5YhuuPt9XieR2W_jMXRoKkSqaKUswpA6CcyqgkWy6SeMsrVqoKM6kqnnAAnFZcUsZUCSxKlZAQs2nweMo9mO63B-uKXdeb1p8saOyhpTSh3KvISeW_s9ZAVRyM3kszFAQXI9tiZFuMbIszW-95OHk0AFz0IiJxKhL2BwZ2dpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610982724</pqid></control><display><type>article</type><title>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Jiaojiao ; Zhu, Lin ; Dong, Qihuan ; Kritprajun, Paychuda ; Liu, Yunting ; Liu, Yilu ; Tolbert, Leon M. ; Hambrick, Joshua C. ; Xue, Yaosuo Sonny ; Ollis, T. Ben ; Bhattarai, Bishnu P. ; Schneider, Kevin P. ; Laval, Stuart</creator><creatorcontrib>Dong, Jiaojiao ; Zhu, Lin ; Dong, Qihuan ; Kritprajun, Paychuda ; Liu, Yunting ; Liu, Yilu ; Tolbert, Leon M. ; Hambrick, Joshua C. ; Xue, Yaosuo Sonny ; Ollis, T. Ben ; Bhattarai, Bishnu P. ; Schneider, Kevin P. ; Laval, Stuart</creatorcontrib><description>Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2021.3105125</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Batteries ; Distributed generation ; Electric potential ; Energy distribution ; Energy resources ; Energy sources ; Mathematical model ; Microgrids ; Monte Carlo simulation ; Network reliability ; Nonutility generation ; Power control ; power distribution ; Power flow ; power system economics ; power system reliability ; power system restoration ; Reactive power ; Reconfiguration ; Reliability ; Reliability analysis ; Resilience ; Service restoration ; System reliability ; Transactive energy ; Voltage</subject><ispartof>IEEE transactions on sustainable energy, 2022-01, Vol.13 (1), p.122-134</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</citedby><cites>FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</cites><orcidid>0000-0001-7777-7043 ; 0000-0003-0731-6924 ; 0000-0002-7285-609X ; 0000-0003-1749-5014 ; 0000-0002-4912-9660 ; 0000-0002-6707-9062 ; 0000-0001-9016-4268 ; 0000-0001-5222-0660 ; 0000-0002-9849-6010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9516897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9516897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Jiaojiao</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Qihuan</creatorcontrib><creatorcontrib>Kritprajun, Paychuda</creatorcontrib><creatorcontrib>Liu, Yunting</creatorcontrib><creatorcontrib>Liu, Yilu</creatorcontrib><creatorcontrib>Tolbert, Leon M.</creatorcontrib><creatorcontrib>Hambrick, Joshua C.</creatorcontrib><creatorcontrib>Xue, Yaosuo Sonny</creatorcontrib><creatorcontrib>Ollis, T. Ben</creatorcontrib><creatorcontrib>Bhattarai, Bishnu P.</creatorcontrib><creatorcontrib>Schneider, Kevin P.</creatorcontrib><creatorcontrib>Laval, Stuart</creatorcontrib><title>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%.</description><subject>Batteries</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Energy distribution</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Mathematical model</subject><subject>Microgrids</subject><subject>Monte Carlo simulation</subject><subject>Network reliability</subject><subject>Nonutility generation</subject><subject>Power control</subject><subject>power distribution</subject><subject>Power flow</subject><subject>power system economics</subject><subject>power system reliability</subject><subject>power system restoration</subject><subject>Reactive power</subject><subject>Reconfiguration</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Resilience</subject><subject>Service restoration</subject><subject>System reliability</subject><subject>Transactive energy</subject><subject>Voltage</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhYMoWGp_gPiy4HPq3nLZR6nRFiqCjfgYdtNJ3JImdXdTyL93Y0vnZQbmnDPDFwT3BM8JweIp3-TZnGJK5ozgiNDoKpgQwUXIMEuuLzMVt8HM2h32xRiLGZ4Eh1XroDbS6bZGuZGtlaXTR0BZC6YekF936BMaLZVutBtQdpRN7-Vdi6rOIIk20FThEmQzJrxo64xW_f9-M1gHe_St3Q9616XpaqO3d8FNJRsLs3OfBl-vWb5YhuuPt9XieR2W_jMXRoKkSqaKUswpA6CcyqgkWy6SeMsrVqoKM6kqnnAAnFZcUsZUCSxKlZAQs2nweMo9mO63B-uKXdeb1p8saOyhpTSh3KvISeW_s9ZAVRyM3kszFAQXI9tiZFuMbIszW-95OHk0AFz0IiJxKhL2BwZ2dpU</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Dong, Jiaojiao</creator><creator>Zhu, Lin</creator><creator>Dong, Qihuan</creator><creator>Kritprajun, Paychuda</creator><creator>Liu, Yunting</creator><creator>Liu, Yilu</creator><creator>Tolbert, Leon M.</creator><creator>Hambrick, Joshua C.</creator><creator>Xue, Yaosuo Sonny</creator><creator>Ollis, T. Ben</creator><creator>Bhattarai, Bishnu P.</creator><creator>Schneider, Kevin P.</creator><creator>Laval, Stuart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7777-7043</orcidid><orcidid>https://orcid.org/0000-0003-0731-6924</orcidid><orcidid>https://orcid.org/0000-0002-7285-609X</orcidid><orcidid>https://orcid.org/0000-0003-1749-5014</orcidid><orcidid>https://orcid.org/0000-0002-4912-9660</orcidid><orcidid>https://orcid.org/0000-0002-6707-9062</orcidid><orcidid>https://orcid.org/0000-0001-9016-4268</orcidid><orcidid>https://orcid.org/0000-0001-5222-0660</orcidid><orcidid>https://orcid.org/0000-0002-9849-6010</orcidid></search><sort><creationdate>202201</creationdate><title>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</title><author>Dong, Jiaojiao ; Zhu, Lin ; Dong, Qihuan ; Kritprajun, Paychuda ; Liu, Yunting ; Liu, Yilu ; Tolbert, Leon M. ; Hambrick, Joshua C. ; Xue, Yaosuo Sonny ; Ollis, T. Ben ; Bhattarai, Bishnu P. ; Schneider, Kevin P. ; Laval, Stuart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5918ba8b220423ee242a5c1d4976d4f3cbf03abf474ee08f4a233bce358b9ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Energy distribution</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Mathematical model</topic><topic>Microgrids</topic><topic>Monte Carlo simulation</topic><topic>Network reliability</topic><topic>Nonutility generation</topic><topic>Power control</topic><topic>power distribution</topic><topic>Power flow</topic><topic>power system economics</topic><topic>power system reliability</topic><topic>power system restoration</topic><topic>Reactive power</topic><topic>Reconfiguration</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Resilience</topic><topic>Service restoration</topic><topic>System reliability</topic><topic>Transactive energy</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jiaojiao</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Dong, Qihuan</creatorcontrib><creatorcontrib>Kritprajun, Paychuda</creatorcontrib><creatorcontrib>Liu, Yunting</creatorcontrib><creatorcontrib>Liu, Yilu</creatorcontrib><creatorcontrib>Tolbert, Leon M.</creatorcontrib><creatorcontrib>Hambrick, Joshua C.</creatorcontrib><creatorcontrib>Xue, Yaosuo Sonny</creatorcontrib><creatorcontrib>Ollis, T. Ben</creatorcontrib><creatorcontrib>Bhattarai, Bishnu P.</creatorcontrib><creatorcontrib>Schneider, Kevin P.</creatorcontrib><creatorcontrib>Laval, Stuart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jiaojiao</au><au>Zhu, Lin</au><au>Dong, Qihuan</au><au>Kritprajun, Paychuda</au><au>Liu, Yunting</au><au>Liu, Yilu</au><au>Tolbert, Leon M.</au><au>Hambrick, Joshua C.</au><au>Xue, Yaosuo Sonny</au><au>Ollis, T. Ben</au><au>Bhattarai, Bishnu P.</au><au>Schneider, Kevin P.</au><au>Laval, Stuart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2022-01</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>122</spage><epage>134</epage><pages>122-134</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>Non-utility owned distributed energy resources (DERs) are mostly untapped currently, but they can provide many grid services such as voltage regulation and service restoration, if properly controlled, and can improve the distribution system's reliability when coordinated with utility-owned assets such as self-healing control and microgrids. This paper integrates transactive energy control into the distribution system reliability evaluation to quantitatively assess the impact of non-utility owned DERs on reliability improvement. A transactive reactive power control strategy is designed to incentivize the DERs to provide reactive power support for improving voltage profiles thus enabling additional customer load restoration during an outage. Also, an operational sequence to coordinate the non-utility owned DERs with the utility owned self-healing control and utility owned microgrids is designed and integrated into the service restoration process with the operational constraints guaranteed by checking the three-phase unbalanced power flow for post-fault network reconfiguration. The reliability indices are then calculated through a Monte Carlo simulation. The transactive reactive power control strategy is tested on a four-feeder distribution system operated by Duke Energy in the U.S. Results demonstrate that the non-utility owned DERs with the transactive control improve the reliability of both the system and critical loads by more than 30%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2021.3105125</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7777-7043</orcidid><orcidid>https://orcid.org/0000-0003-0731-6924</orcidid><orcidid>https://orcid.org/0000-0002-7285-609X</orcidid><orcidid>https://orcid.org/0000-0003-1749-5014</orcidid><orcidid>https://orcid.org/0000-0002-4912-9660</orcidid><orcidid>https://orcid.org/0000-0002-6707-9062</orcidid><orcidid>https://orcid.org/0000-0001-9016-4268</orcidid><orcidid>https://orcid.org/0000-0001-5222-0660</orcidid><orcidid>https://orcid.org/0000-0002-9849-6010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3029 |
ispartof | IEEE transactions on sustainable energy, 2022-01, Vol.13 (1), p.122-134 |
issn | 1949-3029 1949-3037 |
language | eng |
recordid | cdi_ieee_primary_9516897 |
source | IEEE Electronic Library (IEL) |
subjects | Batteries Distributed generation Electric potential Energy distribution Energy resources Energy sources Mathematical model Microgrids Monte Carlo simulation Network reliability Nonutility generation Power control power distribution Power flow power system economics power system reliability power system restoration Reactive power Reconfiguration Reliability Reliability analysis Resilience Service restoration System reliability Transactive energy Voltage |
title | Integrating Transactive Energy Into Reliability Evaluation for a Self-Healing Distribution System With Microgrid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Transactive%20Energy%20Into%20Reliability%20Evaluation%20for%20a%20Self-Healing%20Distribution%20System%20With%20Microgrid&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Dong,%20Jiaojiao&rft.date=2022-01&rft.volume=13&rft.issue=1&rft.spage=122&rft.epage=134&rft.pages=122-134&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2021.3105125&rft_dat=%3Cproquest_RIE%3E2610982724%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610982724&rft_id=info:pmid/&rft_ieee_id=9516897&rfr_iscdi=true |