Poststack Seismic Data Compression Using a Generative Adversarial Network

This work presents a method for volumetric seismic data compression by coupling a 3-D convolution-based autoencoder to a generative adversarial network (GAN). The main challenge of 3-D convolutional autoencoders for data compression is how to fully exploit volumetric redundancy while keeping reasona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Ribeiro, Kevyn Swhants dos Santos, Schiavon, Ana Paula, Navarro, Joao Paulo, Vieira, Marcelo Bernardes, Villela, Saulo Moraes, e Silva, Pedro Mario Cruz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Ribeiro, Kevyn Swhants dos Santos
Schiavon, Ana Paula
Navarro, Joao Paulo
Vieira, Marcelo Bernardes
Villela, Saulo Moraes
e Silva, Pedro Mario Cruz
description This work presents a method for volumetric seismic data compression by coupling a 3-D convolution-based autoencoder to a generative adversarial network (GAN). The main challenge of 3-D convolutional autoencoders for data compression is how to fully exploit volumetric redundancy while keeping reasonable latent representation dimensions. Our method is based on a convolutional neural network for seismic data compression called 3DSC. Its encoder and decoder use 3-D convolutions and are connected by a latent representation with the same dimensions as its 2-D network counterparts. Our main hypothesis is that the 3DSC architecture can be improved by adversarial training. We, thus, propose a new 3-D-based seismic data compression method (3DSC-GAN) by coupling the 3DSC network to a GAN. The seismic data decoder is used as a generator of poststack data that are integrated with a discriminator module to better exploit 3-D redundancy. Results show that our method outperforms previous seismic data compression methods for very low target bit rates, increasing the peak signal-to-noise ratio (PSNR) with fairly high visual quality.
doi_str_mv 10.1109/LGRS.2021.3103663
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9515684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9515684</ieee_id><sourcerecordid>2615165082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-32e07c59ab596d5cb627b8bc75a06f2eb70e6f4aff44dc7dba8767f4b7f4af623</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKsPIN4EvN6aw-awl6XaWigq1oJ3IcnOSnrYrcm24tvbpcWr-Rm-fwY-hG4pGVBKiofZ5H0-YITRAaeES8nPUI8KoTMiFD3vci4yUejPS3SV0pIQlmutemj61qQ2tdav8BxC2gSPH21r8ajZbCOkFJoaL1Kov7DFE6gh2jbsAQ_LPcRkY7Br_ALtTxNX1-iisusEN6fZR4vx08foOZu9Tqaj4SzzrOBtxhkQ5UVhnShkKbyTTDntvBKWyIqBUwRklduqyvPSq9JZraSqcqe6pWS8j-6Pd7ex-d5Bas2y2cX68NIwSQWVguiOokfKxyalCJXZxrCx8ddQYjpjpjNmOmPmZOzQuTt2AgD884WgQuqc_wGYr2gX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615165082</pqid></control><display><type>article</type><title>Poststack Seismic Data Compression Using a Generative Adversarial Network</title><source>IEEE Electronic Library (IEL)</source><creator>Ribeiro, Kevyn Swhants dos Santos ; Schiavon, Ana Paula ; Navarro, Joao Paulo ; Vieira, Marcelo Bernardes ; Villela, Saulo Moraes ; e Silva, Pedro Mario Cruz</creator><creatorcontrib>Ribeiro, Kevyn Swhants dos Santos ; Schiavon, Ana Paula ; Navarro, Joao Paulo ; Vieira, Marcelo Bernardes ; Villela, Saulo Moraes ; e Silva, Pedro Mario Cruz</creatorcontrib><description>This work presents a method for volumetric seismic data compression by coupling a 3-D convolution-based autoencoder to a generative adversarial network (GAN). The main challenge of 3-D convolutional autoencoders for data compression is how to fully exploit volumetric redundancy while keeping reasonable latent representation dimensions. Our method is based on a convolutional neural network for seismic data compression called 3DSC. Its encoder and decoder use 3-D convolutions and are connected by a latent representation with the same dimensions as its 2-D network counterparts. Our main hypothesis is that the 3DSC architecture can be improved by adversarial training. We, thus, propose a new 3-D-based seismic data compression method (3DSC-GAN) by coupling the 3DSC network to a GAN. The seismic data decoder is used as a generator of poststack data that are integrated with a discriminator module to better exploit 3-D redundancy. Results show that our method outperforms previous seismic data compression methods for very low target bit rates, increasing the peak signal-to-noise ratio (PSNR) with fairly high visual quality.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3103663</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3-D poststack data ; Artificial neural networks ; Bit rate ; Coders ; Compression ; Convolution ; Coupling ; Data compression ; deep learning ; Dimensions ; Exploitation ; Generative adversarial networks ; generative adversarial networks (GANs) ; Generators ; Image coding ; Neural networks ; Redundancy ; Representations ; Seismic activity ; Seismic data ; seismic data compression ; Seismological data ; Signal to noise ratio ; Training ; Visual signals</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-32e07c59ab596d5cb627b8bc75a06f2eb70e6f4aff44dc7dba8767f4b7f4af623</citedby><cites>FETCH-LOGICAL-c293t-32e07c59ab596d5cb627b8bc75a06f2eb70e6f4aff44dc7dba8767f4b7f4af623</cites><orcidid>0000-0003-0951-8378 ; 0000-0001-5958-4766 ; 0000-0001-7878-2944 ; 0000-0003-3356-6679 ; 0000-0002-0060-9663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9515684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9515684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ribeiro, Kevyn Swhants dos Santos</creatorcontrib><creatorcontrib>Schiavon, Ana Paula</creatorcontrib><creatorcontrib>Navarro, Joao Paulo</creatorcontrib><creatorcontrib>Vieira, Marcelo Bernardes</creatorcontrib><creatorcontrib>Villela, Saulo Moraes</creatorcontrib><creatorcontrib>e Silva, Pedro Mario Cruz</creatorcontrib><title>Poststack Seismic Data Compression Using a Generative Adversarial Network</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This work presents a method for volumetric seismic data compression by coupling a 3-D convolution-based autoencoder to a generative adversarial network (GAN). The main challenge of 3-D convolutional autoencoders for data compression is how to fully exploit volumetric redundancy while keeping reasonable latent representation dimensions. Our method is based on a convolutional neural network for seismic data compression called 3DSC. Its encoder and decoder use 3-D convolutions and are connected by a latent representation with the same dimensions as its 2-D network counterparts. Our main hypothesis is that the 3DSC architecture can be improved by adversarial training. We, thus, propose a new 3-D-based seismic data compression method (3DSC-GAN) by coupling the 3DSC network to a GAN. The seismic data decoder is used as a generator of poststack data that are integrated with a discriminator module to better exploit 3-D redundancy. Results show that our method outperforms previous seismic data compression methods for very low target bit rates, increasing the peak signal-to-noise ratio (PSNR) with fairly high visual quality.</description><subject>3-D poststack data</subject><subject>Artificial neural networks</subject><subject>Bit rate</subject><subject>Coders</subject><subject>Compression</subject><subject>Convolution</subject><subject>Coupling</subject><subject>Data compression</subject><subject>deep learning</subject><subject>Dimensions</subject><subject>Exploitation</subject><subject>Generative adversarial networks</subject><subject>generative adversarial networks (GANs)</subject><subject>Generators</subject><subject>Image coding</subject><subject>Neural networks</subject><subject>Redundancy</subject><subject>Representations</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>seismic data compression</subject><subject>Seismological data</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Visual signals</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWKsPIN4EvN6aw-awl6XaWigq1oJ3IcnOSnrYrcm24tvbpcWr-Rm-fwY-hG4pGVBKiofZ5H0-YITRAaeES8nPUI8KoTMiFD3vci4yUejPS3SV0pIQlmutemj61qQ2tdav8BxC2gSPH21r8ajZbCOkFJoaL1Kov7DFE6gh2jbsAQ_LPcRkY7Br_ALtTxNX1-iisusEN6fZR4vx08foOZu9Tqaj4SzzrOBtxhkQ5UVhnShkKbyTTDntvBKWyIqBUwRklduqyvPSq9JZraSqcqe6pWS8j-6Pd7ex-d5Bas2y2cX68NIwSQWVguiOokfKxyalCJXZxrCx8ddQYjpjpjNmOmPmZOzQuTt2AgD884WgQuqc_wGYr2gX</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ribeiro, Kevyn Swhants dos Santos</creator><creator>Schiavon, Ana Paula</creator><creator>Navarro, Joao Paulo</creator><creator>Vieira, Marcelo Bernardes</creator><creator>Villela, Saulo Moraes</creator><creator>e Silva, Pedro Mario Cruz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0951-8378</orcidid><orcidid>https://orcid.org/0000-0001-5958-4766</orcidid><orcidid>https://orcid.org/0000-0001-7878-2944</orcidid><orcidid>https://orcid.org/0000-0003-3356-6679</orcidid><orcidid>https://orcid.org/0000-0002-0060-9663</orcidid></search><sort><creationdate>2022</creationdate><title>Poststack Seismic Data Compression Using a Generative Adversarial Network</title><author>Ribeiro, Kevyn Swhants dos Santos ; Schiavon, Ana Paula ; Navarro, Joao Paulo ; Vieira, Marcelo Bernardes ; Villela, Saulo Moraes ; e Silva, Pedro Mario Cruz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-32e07c59ab596d5cb627b8bc75a06f2eb70e6f4aff44dc7dba8767f4b7f4af623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D poststack data</topic><topic>Artificial neural networks</topic><topic>Bit rate</topic><topic>Coders</topic><topic>Compression</topic><topic>Convolution</topic><topic>Coupling</topic><topic>Data compression</topic><topic>deep learning</topic><topic>Dimensions</topic><topic>Exploitation</topic><topic>Generative adversarial networks</topic><topic>generative adversarial networks (GANs)</topic><topic>Generators</topic><topic>Image coding</topic><topic>Neural networks</topic><topic>Redundancy</topic><topic>Representations</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>seismic data compression</topic><topic>Seismological data</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Visual signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, Kevyn Swhants dos Santos</creatorcontrib><creatorcontrib>Schiavon, Ana Paula</creatorcontrib><creatorcontrib>Navarro, Joao Paulo</creatorcontrib><creatorcontrib>Vieira, Marcelo Bernardes</creatorcontrib><creatorcontrib>Villela, Saulo Moraes</creatorcontrib><creatorcontrib>e Silva, Pedro Mario Cruz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ribeiro, Kevyn Swhants dos Santos</au><au>Schiavon, Ana Paula</au><au>Navarro, Joao Paulo</au><au>Vieira, Marcelo Bernardes</au><au>Villela, Saulo Moraes</au><au>e Silva, Pedro Mario Cruz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poststack Seismic Data Compression Using a Generative Adversarial Network</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This work presents a method for volumetric seismic data compression by coupling a 3-D convolution-based autoencoder to a generative adversarial network (GAN). The main challenge of 3-D convolutional autoencoders for data compression is how to fully exploit volumetric redundancy while keeping reasonable latent representation dimensions. Our method is based on a convolutional neural network for seismic data compression called 3DSC. Its encoder and decoder use 3-D convolutions and are connected by a latent representation with the same dimensions as its 2-D network counterparts. Our main hypothesis is that the 3DSC architecture can be improved by adversarial training. We, thus, propose a new 3-D-based seismic data compression method (3DSC-GAN) by coupling the 3DSC network to a GAN. The seismic data decoder is used as a generator of poststack data that are integrated with a discriminator module to better exploit 3-D redundancy. Results show that our method outperforms previous seismic data compression methods for very low target bit rates, increasing the peak signal-to-noise ratio (PSNR) with fairly high visual quality.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3103663</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0951-8378</orcidid><orcidid>https://orcid.org/0000-0001-5958-4766</orcidid><orcidid>https://orcid.org/0000-0001-7878-2944</orcidid><orcidid>https://orcid.org/0000-0003-3356-6679</orcidid><orcidid>https://orcid.org/0000-0002-0060-9663</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9515684
source IEEE Electronic Library (IEL)
subjects 3-D poststack data
Artificial neural networks
Bit rate
Coders
Compression
Convolution
Coupling
Data compression
deep learning
Dimensions
Exploitation
Generative adversarial networks
generative adversarial networks (GANs)
Generators
Image coding
Neural networks
Redundancy
Representations
Seismic activity
Seismic data
seismic data compression
Seismological data
Signal to noise ratio
Training
Visual signals
title Poststack Seismic Data Compression Using a Generative Adversarial Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poststack%20Seismic%20Data%20Compression%20Using%20a%20Generative%20Adversarial%20Network&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ribeiro,%20Kevyn%20Swhants%20dos%20Santos&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3103663&rft_dat=%3Cproquest_RIE%3E2615165082%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615165082&rft_id=info:pmid/&rft_ieee_id=9515684&rfr_iscdi=true