Statistical Inference of Sound Speed and Attenuation Dispersion of a Fine-Grained Marine Sediment

Acoustic recordings of signals in the 1.5-4.0-kHz band were analyzed for information about the sound speed and attenuation frequency dispersion of a fine-grained sediment found in the New England Mudpatch. Analysis of piston cores established prior bounds for a geophysical parameterization of a seab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of oceanic engineering 2022-07, Vol.47 (3), p.553-564
Hauptverfasser: Knobles, David Paul, Escobar-Amado, Christian D., Buckingham, Michael J., Hodgkiss, William S., Wilson, Preston S., Neilsen, Tracianne B., Yang, Jie, Badiey, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 3
container_start_page 553
container_title IEEE journal of oceanic engineering
container_volume 47
creator Knobles, David Paul
Escobar-Amado, Christian D.
Buckingham, Michael J.
Hodgkiss, William S.
Wilson, Preston S.
Neilsen, Tracianne B.
Yang, Jie
Badiey, Mohsen
description Acoustic recordings of signals in the 1.5-4.0-kHz band were analyzed for information about the sound speed and attenuation frequency dispersion of a fine-grained sediment found in the New England Mudpatch. Analysis of piston cores established prior bounds for a geophysical parameterization of a seabed model that predicts Kramers-Kronig dispersion relations. Sediment layers are described by the Buckingham viscous grain shearing (VGS) model that accounts for the effects of overburden pressure of compressional and shear speeds and attenuations. A statistical inverse problem was solved by using multiple samples of received levels recorded on two vertical line arrays as a function time and hydrophone depth for six frequencies in the 1.5-4.0-kHz band. A statistical inference model that assumed both model parameters and data samples are random variables quantified information content from marginalization of a conditional posterior probability distribution for the geophysical parameters that characterize the mud layer. From the inferred geophysical parameter point estimates the sediment sound speed and attenuation frequency dispersion are predicted and compared to previously reported direct measurements. Also, the predicted sound-speed gradient in the mud sediment from the VGS model is compared to a previous inference that utilized explosive sources.
doi_str_mv 10.1109/JOE.2021.3091846
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9515024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9515024</ieee_id><sourcerecordid>2688692508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cd946f5ca89e802a16919a0d9e4d0685c6f63943307c9607e4ffdbe6786fb3483</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7FYYk45x45rj1WhpaioQ2COXOcspWqdYDsD_55ErZi-G953d3qEPDKYMQb65WP3NsshZzMOmikhr8iEFYXKmNTsmkyAS5FpKPQtuYvxAMCEmOsJMWUyqYmpseZIN95hQG-Rto6Wbe9rWnaINTXDtEgJfT_AraevTewwxHEcSENXjcdsHcwQNf00YUhaYt2c0Kd7cuPMMeLDJafke_X2tXzPtrv1ZrnYZjbXLGW21kK6whqlUUFuxr-1gVqjqEGqwkonuRacw9xqCXMUztV7lHMl3Z4Lxafk-by3C-1PjzFVh7YPfjhZ5VIpqfMCRgrOlA1tjAFd1YXmZMJvxaAaRVaDyGoUWV1EDpWnc6VBxH9cF6yAXPA_ERxuSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688692508</pqid></control><display><type>article</type><title>Statistical Inference of Sound Speed and Attenuation Dispersion of a Fine-Grained Marine Sediment</title><source>IEEE Electronic Library (IEL)</source><creator>Knobles, David Paul ; Escobar-Amado, Christian D. ; Buckingham, Michael J. ; Hodgkiss, William S. ; Wilson, Preston S. ; Neilsen, Tracianne B. ; Yang, Jie ; Badiey, Mohsen</creator><creatorcontrib>Knobles, David Paul ; Escobar-Amado, Christian D. ; Buckingham, Michael J. ; Hodgkiss, William S. ; Wilson, Preston S. ; Neilsen, Tracianne B. ; Yang, Jie ; Badiey, Mohsen</creatorcontrib><description>Acoustic recordings of signals in the 1.5-4.0-kHz band were analyzed for information about the sound speed and attenuation frequency dispersion of a fine-grained sediment found in the New England Mudpatch. Analysis of piston cores established prior bounds for a geophysical parameterization of a seabed model that predicts Kramers-Kronig dispersion relations. Sediment layers are described by the Buckingham viscous grain shearing (VGS) model that accounts for the effects of overburden pressure of compressional and shear speeds and attenuations. A statistical inverse problem was solved by using multiple samples of received levels recorded on two vertical line arrays as a function time and hydrophone depth for six frequencies in the 1.5-4.0-kHz band. A statistical inference model that assumed both model parameters and data samples are random variables quantified information content from marginalization of a conditional posterior probability distribution for the geophysical parameters that characterize the mud layer. From the inferred geophysical parameter point estimates the sediment sound speed and attenuation frequency dispersion are predicted and compared to previously reported direct measurements. Also, the predicted sound-speed gradient in the mud sediment from the VGS model is compared to a previous inference that utilized explosive sources.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2021.3091846</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Attenuation ; Conditional probability ; Data ensemble maximum entropy (DEME) ; Dispersion ; frequency dispersion ; Frequency measurement ; Geophysics ; Hydrophones ; Inverse problems ; Marine sediments ; Mathematical model ; Mathematical models ; Mud ; Ocean floor ; Parameter estimation ; Parameterization ; Parameters ; Pressure effects ; Probability distribution ; Probability theory ; Random variables ; Samples ; Sea measurements ; seabed geophysical parameters ; Sediment ; Sediments ; Shearing ; Sound ; Sound velocity ; Statistical analysis ; Statistical inference</subject><ispartof>IEEE journal of oceanic engineering, 2022-07, Vol.47 (3), p.553-564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cd946f5ca89e802a16919a0d9e4d0685c6f63943307c9607e4ffdbe6786fb3483</citedby><cites>FETCH-LOGICAL-c291t-cd946f5ca89e802a16919a0d9e4d0685c6f63943307c9607e4ffdbe6786fb3483</cites><orcidid>0000-0001-8555-742X ; 0000-0002-7699-0202 ; 0000-0002-9729-373X ; 0000-0001-9481-1362 ; 0000-0002-4420-7180 ; 0000-0003-2907-7311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9515024$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9515024$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Knobles, David Paul</creatorcontrib><creatorcontrib>Escobar-Amado, Christian D.</creatorcontrib><creatorcontrib>Buckingham, Michael J.</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><creatorcontrib>Wilson, Preston S.</creatorcontrib><creatorcontrib>Neilsen, Tracianne B.</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Badiey, Mohsen</creatorcontrib><title>Statistical Inference of Sound Speed and Attenuation Dispersion of a Fine-Grained Marine Sediment</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>Acoustic recordings of signals in the 1.5-4.0-kHz band were analyzed for information about the sound speed and attenuation frequency dispersion of a fine-grained sediment found in the New England Mudpatch. Analysis of piston cores established prior bounds for a geophysical parameterization of a seabed model that predicts Kramers-Kronig dispersion relations. Sediment layers are described by the Buckingham viscous grain shearing (VGS) model that accounts for the effects of overburden pressure of compressional and shear speeds and attenuations. A statistical inverse problem was solved by using multiple samples of received levels recorded on two vertical line arrays as a function time and hydrophone depth for six frequencies in the 1.5-4.0-kHz band. A statistical inference model that assumed both model parameters and data samples are random variables quantified information content from marginalization of a conditional posterior probability distribution for the geophysical parameters that characterize the mud layer. From the inferred geophysical parameter point estimates the sediment sound speed and attenuation frequency dispersion are predicted and compared to previously reported direct measurements. Also, the predicted sound-speed gradient in the mud sediment from the VGS model is compared to a previous inference that utilized explosive sources.</description><subject>Acoustics</subject><subject>Attenuation</subject><subject>Conditional probability</subject><subject>Data ensemble maximum entropy (DEME)</subject><subject>Dispersion</subject><subject>frequency dispersion</subject><subject>Frequency measurement</subject><subject>Geophysics</subject><subject>Hydrophones</subject><subject>Inverse problems</subject><subject>Marine sediments</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mud</subject><subject>Ocean floor</subject><subject>Parameter estimation</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Pressure effects</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Samples</subject><subject>Sea measurements</subject><subject>seabed geophysical parameters</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Shearing</subject><subject>Sound</subject><subject>Sound velocity</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQRi0EEqWwI7FYYk45x45rj1WhpaioQ2COXOcspWqdYDsD_55ErZi-G953d3qEPDKYMQb65WP3NsshZzMOmikhr8iEFYXKmNTsmkyAS5FpKPQtuYvxAMCEmOsJMWUyqYmpseZIN95hQG-Rto6Wbe9rWnaINTXDtEgJfT_AraevTewwxHEcSENXjcdsHcwQNf00YUhaYt2c0Kd7cuPMMeLDJafke_X2tXzPtrv1ZrnYZjbXLGW21kK6whqlUUFuxr-1gVqjqEGqwkonuRacw9xqCXMUztV7lHMl3Z4Lxafk-by3C-1PjzFVh7YPfjhZ5VIpqfMCRgrOlA1tjAFd1YXmZMJvxaAaRVaDyGoUWV1EDpWnc6VBxH9cF6yAXPA_ERxuSA</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Knobles, David Paul</creator><creator>Escobar-Amado, Christian D.</creator><creator>Buckingham, Michael J.</creator><creator>Hodgkiss, William S.</creator><creator>Wilson, Preston S.</creator><creator>Neilsen, Tracianne B.</creator><creator>Yang, Jie</creator><creator>Badiey, Mohsen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8555-742X</orcidid><orcidid>https://orcid.org/0000-0002-7699-0202</orcidid><orcidid>https://orcid.org/0000-0002-9729-373X</orcidid><orcidid>https://orcid.org/0000-0001-9481-1362</orcidid><orcidid>https://orcid.org/0000-0002-4420-7180</orcidid><orcidid>https://orcid.org/0000-0003-2907-7311</orcidid></search><sort><creationdate>202207</creationdate><title>Statistical Inference of Sound Speed and Attenuation Dispersion of a Fine-Grained Marine Sediment</title><author>Knobles, David Paul ; Escobar-Amado, Christian D. ; Buckingham, Michael J. ; Hodgkiss, William S. ; Wilson, Preston S. ; Neilsen, Tracianne B. ; Yang, Jie ; Badiey, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cd946f5ca89e802a16919a0d9e4d0685c6f63943307c9607e4ffdbe6786fb3483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Attenuation</topic><topic>Conditional probability</topic><topic>Data ensemble maximum entropy (DEME)</topic><topic>Dispersion</topic><topic>frequency dispersion</topic><topic>Frequency measurement</topic><topic>Geophysics</topic><topic>Hydrophones</topic><topic>Inverse problems</topic><topic>Marine sediments</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mud</topic><topic>Ocean floor</topic><topic>Parameter estimation</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Pressure effects</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Samples</topic><topic>Sea measurements</topic><topic>seabed geophysical parameters</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Shearing</topic><topic>Sound</topic><topic>Sound velocity</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knobles, David Paul</creatorcontrib><creatorcontrib>Escobar-Amado, Christian D.</creatorcontrib><creatorcontrib>Buckingham, Michael J.</creatorcontrib><creatorcontrib>Hodgkiss, William S.</creatorcontrib><creatorcontrib>Wilson, Preston S.</creatorcontrib><creatorcontrib>Neilsen, Tracianne B.</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Badiey, Mohsen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knobles, David Paul</au><au>Escobar-Amado, Christian D.</au><au>Buckingham, Michael J.</au><au>Hodgkiss, William S.</au><au>Wilson, Preston S.</au><au>Neilsen, Tracianne B.</au><au>Yang, Jie</au><au>Badiey, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Inference of Sound Speed and Attenuation Dispersion of a Fine-Grained Marine Sediment</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2022-07</date><risdate>2022</risdate><volume>47</volume><issue>3</issue><spage>553</spage><epage>564</epage><pages>553-564</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>Acoustic recordings of signals in the 1.5-4.0-kHz band were analyzed for information about the sound speed and attenuation frequency dispersion of a fine-grained sediment found in the New England Mudpatch. Analysis of piston cores established prior bounds for a geophysical parameterization of a seabed model that predicts Kramers-Kronig dispersion relations. Sediment layers are described by the Buckingham viscous grain shearing (VGS) model that accounts for the effects of overburden pressure of compressional and shear speeds and attenuations. A statistical inverse problem was solved by using multiple samples of received levels recorded on two vertical line arrays as a function time and hydrophone depth for six frequencies in the 1.5-4.0-kHz band. A statistical inference model that assumed both model parameters and data samples are random variables quantified information content from marginalization of a conditional posterior probability distribution for the geophysical parameters that characterize the mud layer. From the inferred geophysical parameter point estimates the sediment sound speed and attenuation frequency dispersion are predicted and compared to previously reported direct measurements. Also, the predicted sound-speed gradient in the mud sediment from the VGS model is compared to a previous inference that utilized explosive sources.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2021.3091846</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8555-742X</orcidid><orcidid>https://orcid.org/0000-0002-7699-0202</orcidid><orcidid>https://orcid.org/0000-0002-9729-373X</orcidid><orcidid>https://orcid.org/0000-0001-9481-1362</orcidid><orcidid>https://orcid.org/0000-0002-4420-7180</orcidid><orcidid>https://orcid.org/0000-0003-2907-7311</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2022-07, Vol.47 (3), p.553-564
issn 0364-9059
1558-1691
language eng
recordid cdi_ieee_primary_9515024
source IEEE Electronic Library (IEL)
subjects Acoustics
Attenuation
Conditional probability
Data ensemble maximum entropy (DEME)
Dispersion
frequency dispersion
Frequency measurement
Geophysics
Hydrophones
Inverse problems
Marine sediments
Mathematical model
Mathematical models
Mud
Ocean floor
Parameter estimation
Parameterization
Parameters
Pressure effects
Probability distribution
Probability theory
Random variables
Samples
Sea measurements
seabed geophysical parameters
Sediment
Sediments
Shearing
Sound
Sound velocity
Statistical analysis
Statistical inference
title Statistical Inference of Sound Speed and Attenuation Dispersion of a Fine-Grained Marine Sediment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Inference%20of%20Sound%20Speed%20and%20Attenuation%20Dispersion%20of%20a%20Fine-Grained%20Marine%20Sediment&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Knobles,%20David%20Paul&rft.date=2022-07&rft.volume=47&rft.issue=3&rft.spage=553&rft.epage=564&rft.pages=553-564&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2021.3091846&rft_dat=%3Cproquest_RIE%3E2688692508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688692508&rft_id=info:pmid/&rft_ieee_id=9515024&rfr_iscdi=true