A Multiscale Spectral Features Graph Fusion Method for Hyperspectral Band Selection

This article proposes a multiscale spectral features graph fusion (MSFGF) method for selecting proper hyperspectral bands. The MSFGF regards that the selected bands should reflect diagnostic spectral information of ground objects at different scales, and it explores band selection from the aspect of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-12
Hauptverfasser: Sun, Weiwei, Yang, Gang, Peng, Jiangtao, Meng, Xiangchao, He, Ke, Li, Wei, Li, Heng-Chao, Du, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Sun, Weiwei
Yang, Gang
Peng, Jiangtao
Meng, Xiangchao
He, Ke
Li, Wei
Li, Heng-Chao
Du, Qian
description This article proposes a multiscale spectral features graph fusion (MSFGF) method for selecting proper hyperspectral bands. The MSFGF regards that the selected bands should reflect diagnostic spectral information of ground objects at different scales, and it explores band selection from the aspect of multiple spatial scales. First, it adopts the multiscale low-rank decomposition (MSLRD) model to find multiscale spectral features of different ground objects. The model considers divergent spatial structures or spatial correlations of ground objects at different scales, and factorizes the hyperspectral data cube into a series of low-rank block-wise data cubes, where the blocks take spatial structures of different ground objects at increasing scales. Second, the MSFGF presents the multiscale sparse spectral clustering (MSSC) model to fuse the separate connected graphs of multiscale spectral features into a consensus graph. The consensus graph combines the complementary information of multiscale spectral features and helps to reveal the intrinsic clustering structure of all spectral bands. Finally, the MSFGF utilizes spectral clustering to find clusters from the consensus graph and selects representative bands. Experimental results on three widely used hyperspectral data prove the superiority of MSFGF in selecting bands, where it outperforms other seven state-of-the-art methods in classification with an acceptable computational cost.
doi_str_mv 10.1109/TGRS.2021.3102246
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9513252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9513252</ieee_id><sourcerecordid>2622825892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-64a23083cdc76389ac80b213d19a1a283d735695b82218abd46d46c9356c28973</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKs_QLwEPG_NTDbZ5FiLbYUWwa3nkGZT2rJ212T30H9vSqswMMzwvRneI-QR2AiA6ZfV7LMcIUMYcWCIubwiAxBCZUzm-TUZMNAyQ6XxltzFuGcMcgHFgJRjuuzrbhedrT0tW--6YGs69bbrg490Fmy7pdM-7poDXfpu21R00wQ6P7Y-xD_81R4qWvo6jYm7JzcbW0f_cOlD8jV9W03m2eJj9j4ZLzKHmneZzC1yprirXCG50tYptkbgFWgLFhWvCi6kFmuFCMquq1ymcjotXXJS8CF5Pt9tQ_PT-9iZfdOHQ3ppUCIqFMlvouBMudDEGPzGtGH3bcPRADOn7MwpO3PKzlyyS5qns2bnvf_ntQCOAvkvm01pHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622825892</pqid></control><display><type>article</type><title>A Multiscale Spectral Features Graph Fusion Method for Hyperspectral Band Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Weiwei ; Yang, Gang ; Peng, Jiangtao ; Meng, Xiangchao ; He, Ke ; Li, Wei ; Li, Heng-Chao ; Du, Qian</creator><creatorcontrib>Sun, Weiwei ; Yang, Gang ; Peng, Jiangtao ; Meng, Xiangchao ; He, Ke ; Li, Wei ; Li, Heng-Chao ; Du, Qian</creatorcontrib><description>This article proposes a multiscale spectral features graph fusion (MSFGF) method for selecting proper hyperspectral bands. The MSFGF regards that the selected bands should reflect diagnostic spectral information of ground objects at different scales, and it explores band selection from the aspect of multiple spatial scales. First, it adopts the multiscale low-rank decomposition (MSLRD) model to find multiscale spectral features of different ground objects. The model considers divergent spatial structures or spatial correlations of ground objects at different scales, and factorizes the hyperspectral data cube into a series of low-rank block-wise data cubes, where the blocks take spatial structures of different ground objects at increasing scales. Second, the MSFGF presents the multiscale sparse spectral clustering (MSSC) model to fuse the separate connected graphs of multiscale spectral features into a consensus graph. The consensus graph combines the complementary information of multiscale spectral features and helps to reveal the intrinsic clustering structure of all spectral bands. Finally, the MSFGF utilizes spectral clustering to find clusters from the consensus graph and selects representative bands. Experimental results on three widely used hyperspectral data prove the superiority of MSFGF in selecting bands, where it outperforms other seven state-of-the-art methods in classification with an acceptable computational cost.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3102246</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band selection ; Band spectra ; Banded structure ; Clustering ; Computer applications ; Correlation ; Cubes ; Divergence ; Feature extraction ; Fuses ; Graphs ; hyperspectral imagery (HSI) ; Hyperspectral imaging ; Matrix decomposition ; multiscale low-rank decomposition (MSLRD) ; multiscale sparse spectral clustering (MSSC) ; multiscale spectral features graph fusion (MSFGF) ; Sparse matrices ; Spectral bands ; Sun</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-64a23083cdc76389ac80b213d19a1a283d735695b82218abd46d46c9356c28973</citedby><cites>FETCH-LOGICAL-c293t-64a23083cdc76389ac80b213d19a1a283d735695b82218abd46d46c9356c28973</cites><orcidid>0000-0001-7015-7335 ; 0000-0001-8354-7500 ; 0000-0003-3399-7858 ; 0000-0002-7001-2037 ; 0000-0002-4759-0584 ; 0000-0002-9427-7048 ; 0000-0002-7405-3143 ; 0000-0002-9735-570X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9513252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9513252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Peng, Jiangtao</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>A Multiscale Spectral Features Graph Fusion Method for Hyperspectral Band Selection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This article proposes a multiscale spectral features graph fusion (MSFGF) method for selecting proper hyperspectral bands. The MSFGF regards that the selected bands should reflect diagnostic spectral information of ground objects at different scales, and it explores band selection from the aspect of multiple spatial scales. First, it adopts the multiscale low-rank decomposition (MSLRD) model to find multiscale spectral features of different ground objects. The model considers divergent spatial structures or spatial correlations of ground objects at different scales, and factorizes the hyperspectral data cube into a series of low-rank block-wise data cubes, where the blocks take spatial structures of different ground objects at increasing scales. Second, the MSFGF presents the multiscale sparse spectral clustering (MSSC) model to fuse the separate connected graphs of multiscale spectral features into a consensus graph. The consensus graph combines the complementary information of multiscale spectral features and helps to reveal the intrinsic clustering structure of all spectral bands. Finally, the MSFGF utilizes spectral clustering to find clusters from the consensus graph and selects representative bands. Experimental results on three widely used hyperspectral data prove the superiority of MSFGF in selecting bands, where it outperforms other seven state-of-the-art methods in classification with an acceptable computational cost.</description><subject>Band selection</subject><subject>Band spectra</subject><subject>Banded structure</subject><subject>Clustering</subject><subject>Computer applications</subject><subject>Correlation</subject><subject>Cubes</subject><subject>Divergence</subject><subject>Feature extraction</subject><subject>Fuses</subject><subject>Graphs</subject><subject>hyperspectral imagery (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Matrix decomposition</subject><subject>multiscale low-rank decomposition (MSLRD)</subject><subject>multiscale sparse spectral clustering (MSSC)</subject><subject>multiscale spectral features graph fusion (MSFGF)</subject><subject>Sparse matrices</subject><subject>Spectral bands</subject><subject>Sun</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKs_QLwEPG_NTDbZ5FiLbYUWwa3nkGZT2rJ212T30H9vSqswMMzwvRneI-QR2AiA6ZfV7LMcIUMYcWCIubwiAxBCZUzm-TUZMNAyQ6XxltzFuGcMcgHFgJRjuuzrbhedrT0tW--6YGs69bbrg490Fmy7pdM-7poDXfpu21R00wQ6P7Y-xD_81R4qWvo6jYm7JzcbW0f_cOlD8jV9W03m2eJj9j4ZLzKHmneZzC1yprirXCG50tYptkbgFWgLFhWvCi6kFmuFCMquq1ymcjotXXJS8CF5Pt9tQ_PT-9iZfdOHQ3ppUCIqFMlvouBMudDEGPzGtGH3bcPRADOn7MwpO3PKzlyyS5qns2bnvf_ntQCOAvkvm01pHw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Weiwei</creator><creator>Yang, Gang</creator><creator>Peng, Jiangtao</creator><creator>Meng, Xiangchao</creator><creator>He, Ke</creator><creator>Li, Wei</creator><creator>Li, Heng-Chao</creator><creator>Du, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0003-3399-7858</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid><orcidid>https://orcid.org/0000-0002-4759-0584</orcidid><orcidid>https://orcid.org/0000-0002-9427-7048</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid></search><sort><creationdate>2022</creationdate><title>A Multiscale Spectral Features Graph Fusion Method for Hyperspectral Band Selection</title><author>Sun, Weiwei ; Yang, Gang ; Peng, Jiangtao ; Meng, Xiangchao ; He, Ke ; Li, Wei ; Li, Heng-Chao ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-64a23083cdc76389ac80b213d19a1a283d735695b82218abd46d46c9356c28973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Band selection</topic><topic>Band spectra</topic><topic>Banded structure</topic><topic>Clustering</topic><topic>Computer applications</topic><topic>Correlation</topic><topic>Cubes</topic><topic>Divergence</topic><topic>Feature extraction</topic><topic>Fuses</topic><topic>Graphs</topic><topic>hyperspectral imagery (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Matrix decomposition</topic><topic>multiscale low-rank decomposition (MSLRD)</topic><topic>multiscale sparse spectral clustering (MSSC)</topic><topic>multiscale spectral features graph fusion (MSFGF)</topic><topic>Sparse matrices</topic><topic>Spectral bands</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Peng, Jiangtao</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Weiwei</au><au>Yang, Gang</au><au>Peng, Jiangtao</au><au>Meng, Xiangchao</au><au>He, Ke</au><au>Li, Wei</au><au>Li, Heng-Chao</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Spectral Features Graph Fusion Method for Hyperspectral Band Selection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This article proposes a multiscale spectral features graph fusion (MSFGF) method for selecting proper hyperspectral bands. The MSFGF regards that the selected bands should reflect diagnostic spectral information of ground objects at different scales, and it explores band selection from the aspect of multiple spatial scales. First, it adopts the multiscale low-rank decomposition (MSLRD) model to find multiscale spectral features of different ground objects. The model considers divergent spatial structures or spatial correlations of ground objects at different scales, and factorizes the hyperspectral data cube into a series of low-rank block-wise data cubes, where the blocks take spatial structures of different ground objects at increasing scales. Second, the MSFGF presents the multiscale sparse spectral clustering (MSSC) model to fuse the separate connected graphs of multiscale spectral features into a consensus graph. The consensus graph combines the complementary information of multiscale spectral features and helps to reveal the intrinsic clustering structure of all spectral bands. Finally, the MSFGF utilizes spectral clustering to find clusters from the consensus graph and selects representative bands. Experimental results on three widely used hyperspectral data prove the superiority of MSFGF in selecting bands, where it outperforms other seven state-of-the-art methods in classification with an acceptable computational cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3102246</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0003-3399-7858</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid><orcidid>https://orcid.org/0000-0002-4759-0584</orcidid><orcidid>https://orcid.org/0000-0002-9427-7048</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9513252
source IEEE Electronic Library (IEL)
subjects Band selection
Band spectra
Banded structure
Clustering
Computer applications
Correlation
Cubes
Divergence
Feature extraction
Fuses
Graphs
hyperspectral imagery (HSI)
Hyperspectral imaging
Matrix decomposition
multiscale low-rank decomposition (MSLRD)
multiscale sparse spectral clustering (MSSC)
multiscale spectral features graph fusion (MSFGF)
Sparse matrices
Spectral bands
Sun
title A Multiscale Spectral Features Graph Fusion Method for Hyperspectral Band Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Spectral%20Features%20Graph%20Fusion%20Method%20for%20Hyperspectral%20Band%20Selection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sun,%20Weiwei&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3102246&rft_dat=%3Cproquest_RIE%3E2622825892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622825892&rft_id=info:pmid/&rft_ieee_id=9513252&rfr_iscdi=true