Preparation of short-period Fe-N magnetic multilayers using an atomic nitrogen beam

Magnetic multilayers containing Fe-N layers with bilayer periods of between /spl sim/15-84 /spl Aring/ and sharp interfaces, are successfully grown using an atomic (free radical) nitrogen beam. The phase composition and microstructure is found to be a function of the initial Fe layer thickness prior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2001-07, Vol.37 (4), p.2308-2310
Hauptverfasser: Telling, N.D., Bonder, M.J., Jones, G.A., Faunce, C.A., Grundy, P.J., Lord, D.G., Joyce, D.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2310
container_issue 4
container_start_page 2308
container_title IEEE transactions on magnetics
container_volume 37
creator Telling, N.D.
Bonder, M.J.
Jones, G.A.
Faunce, C.A.
Grundy, P.J.
Lord, D.G.
Joyce, D.E.
description Magnetic multilayers containing Fe-N layers with bilayer periods of between /spl sim/15-84 /spl Aring/ and sharp interfaces, are successfully grown using an atomic (free radical) nitrogen beam. The phase composition and microstructure is found to be a function of the initial Fe layer thickness prior to nitrogenation. Generally, higher N content phases are found as the initial Fe layer is reduced. Small grains (/spl sim/10 nm) are observed in multilayers containing /spl alpha/-Fe and /spl gamma/-Fe/sub 4/N phases. In these films, a perpendicular anisotropy is found for a certain thickness of the Fe layers. A stripe domain structure associated with this anisotropy is observed. The origin of this anisotropy may be induced stress caused by lattice mismatch between layers and/or lattice dilation due to N incorporation.
doi_str_mv 10.1109/20.951156
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_951156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>951156</ieee_id><sourcerecordid>26886673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-62c1ff735c2afb97cb55844591d7dcc683f5befa48ca7f322ffe2689b7eeecf93</originalsourceid><addsrcrecordid>eNqF0btrHDEQB2BhYvDFTuHWlQgkIcU6ej9KY-IHGCfgpF60utFFZlc6S7uF_3sr3JGAi6QaxHz6wcwgdErJOaXEfmHk3EpKpTpAK2oF7QhR9g1aEUJNZ4USR-htrY_tKSQlK_TwvcDWFTfHnHAOuP7KZe62UGJe4yvo7vHkNgnm6PG0jHMc3TOUipca0wa7hN2cp9ZLcS55AwkP4KYTdBjcWOHdvh6jn1dff1zedHffrm8vL-46z62eO8U8DUFz6ZkLg9V-kNIIIS1d67X3yvAgBwhOGO904IyFAEwZO2gA8MHyY_Rpl7st-WmBOvdTrB7G0SXIS-0tFYq3RN3kx39KZqSwbSH_h8oYpTRv8P0r-JiXktq4vTHCMMY1aejzDvmSay0Q-m2JkyvPPSX973P1jPS7czX7YR_oqndjKC75WP9-EMQayWVzZzsX2xb-tPchLyHunEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884822370</pqid></control><display><type>article</type><title>Preparation of short-period Fe-N magnetic multilayers using an atomic nitrogen beam</title><source>IEEE Electronic Library (IEL)</source><creator>Telling, N.D. ; Bonder, M.J. ; Jones, G.A. ; Faunce, C.A. ; Grundy, P.J. ; Lord, D.G. ; Joyce, D.E.</creator><creatorcontrib>Telling, N.D. ; Bonder, M.J. ; Jones, G.A. ; Faunce, C.A. ; Grundy, P.J. ; Lord, D.G. ; Joyce, D.E.</creatorcontrib><description>Magnetic multilayers containing Fe-N layers with bilayer periods of between /spl sim/15-84 /spl Aring/ and sharp interfaces, are successfully grown using an atomic (free radical) nitrogen beam. The phase composition and microstructure is found to be a function of the initial Fe layer thickness prior to nitrogenation. Generally, higher N content phases are found as the initial Fe layer is reduced. Small grains (/spl sim/10 nm) are observed in multilayers containing /spl alpha/-Fe and /spl gamma/-Fe/sub 4/N phases. In these films, a perpendicular anisotropy is found for a certain thickness of the Fe layers. A stripe domain structure associated with this anisotropy is observed. The origin of this anisotropy may be induced stress caused by lattice mismatch between layers and/or lattice dilation due to N incorporation.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.951156</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Atomic beams ; Atomic layer deposition ; Atomic measurements ; Beams (radiation) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Free radicals ; Interfacial magnetic properties (multilayers, magnetic quantum wells, superlattices, magnetic heterostructures) ; Iron ; Lattices ; Magnetic multilayers ; Magnetic properties and materials ; Magnetic properties of surface, thin films and multilayers ; Magnetism ; Microstructure ; Multilayers ; Nitrogen ; Nonhomogeneous media ; Origins ; Physics</subject><ispartof>IEEE transactions on magnetics, 2001-07, Vol.37 (4), p.2308-2310</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-62c1ff735c2afb97cb55844591d7dcc683f5befa48ca7f322ffe2689b7eeecf93</citedby><cites>FETCH-LOGICAL-c397t-62c1ff735c2afb97cb55844591d7dcc683f5befa48ca7f322ffe2689b7eeecf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/951156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/951156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14098535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Telling, N.D.</creatorcontrib><creatorcontrib>Bonder, M.J.</creatorcontrib><creatorcontrib>Jones, G.A.</creatorcontrib><creatorcontrib>Faunce, C.A.</creatorcontrib><creatorcontrib>Grundy, P.J.</creatorcontrib><creatorcontrib>Lord, D.G.</creatorcontrib><creatorcontrib>Joyce, D.E.</creatorcontrib><title>Preparation of short-period Fe-N magnetic multilayers using an atomic nitrogen beam</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnetic multilayers containing Fe-N layers with bilayer periods of between /spl sim/15-84 /spl Aring/ and sharp interfaces, are successfully grown using an atomic (free radical) nitrogen beam. The phase composition and microstructure is found to be a function of the initial Fe layer thickness prior to nitrogenation. Generally, higher N content phases are found as the initial Fe layer is reduced. Small grains (/spl sim/10 nm) are observed in multilayers containing /spl alpha/-Fe and /spl gamma/-Fe/sub 4/N phases. In these films, a perpendicular anisotropy is found for a certain thickness of the Fe layers. A stripe domain structure associated with this anisotropy is observed. The origin of this anisotropy may be induced stress caused by lattice mismatch between layers and/or lattice dilation due to N incorporation.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Atomic beams</subject><subject>Atomic layer deposition</subject><subject>Atomic measurements</subject><subject>Beams (radiation)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Free radicals</subject><subject>Interfacial magnetic properties (multilayers, magnetic quantum wells, superlattices, magnetic heterostructures)</subject><subject>Iron</subject><subject>Lattices</subject><subject>Magnetic multilayers</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of surface, thin films and multilayers</subject><subject>Magnetism</subject><subject>Microstructure</subject><subject>Multilayers</subject><subject>Nitrogen</subject><subject>Nonhomogeneous media</subject><subject>Origins</subject><subject>Physics</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0btrHDEQB2BhYvDFTuHWlQgkIcU6ej9KY-IHGCfgpF60utFFZlc6S7uF_3sr3JGAi6QaxHz6wcwgdErJOaXEfmHk3EpKpTpAK2oF7QhR9g1aEUJNZ4USR-htrY_tKSQlK_TwvcDWFTfHnHAOuP7KZe62UGJe4yvo7vHkNgnm6PG0jHMc3TOUipca0wa7hN2cp9ZLcS55AwkP4KYTdBjcWOHdvh6jn1dff1zedHffrm8vL-46z62eO8U8DUFz6ZkLg9V-kNIIIS1d67X3yvAgBwhOGO904IyFAEwZO2gA8MHyY_Rpl7st-WmBOvdTrB7G0SXIS-0tFYq3RN3kx39KZqSwbSH_h8oYpTRv8P0r-JiXktq4vTHCMMY1aejzDvmSay0Q-m2JkyvPPSX973P1jPS7czX7YR_oqndjKC75WP9-EMQayWVzZzsX2xb-tPchLyHunEg</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Telling, N.D.</creator><creator>Bonder, M.J.</creator><creator>Jones, G.A.</creator><creator>Faunce, C.A.</creator><creator>Grundy, P.J.</creator><creator>Lord, D.G.</creator><creator>Joyce, D.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010701</creationdate><title>Preparation of short-period Fe-N magnetic multilayers using an atomic nitrogen beam</title><author>Telling, N.D. ; Bonder, M.J. ; Jones, G.A. ; Faunce, C.A. ; Grundy, P.J. ; Lord, D.G. ; Joyce, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-62c1ff735c2afb97cb55844591d7dcc683f5befa48ca7f322ffe2689b7eeecf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Atomic beams</topic><topic>Atomic layer deposition</topic><topic>Atomic measurements</topic><topic>Beams (radiation)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Free radicals</topic><topic>Interfacial magnetic properties (multilayers, magnetic quantum wells, superlattices, magnetic heterostructures)</topic><topic>Iron</topic><topic>Lattices</topic><topic>Magnetic multilayers</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of surface, thin films and multilayers</topic><topic>Magnetism</topic><topic>Microstructure</topic><topic>Multilayers</topic><topic>Nitrogen</topic><topic>Nonhomogeneous media</topic><topic>Origins</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Telling, N.D.</creatorcontrib><creatorcontrib>Bonder, M.J.</creatorcontrib><creatorcontrib>Jones, G.A.</creatorcontrib><creatorcontrib>Faunce, C.A.</creatorcontrib><creatorcontrib>Grundy, P.J.</creatorcontrib><creatorcontrib>Lord, D.G.</creatorcontrib><creatorcontrib>Joyce, D.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Telling, N.D.</au><au>Bonder, M.J.</au><au>Jones, G.A.</au><au>Faunce, C.A.</au><au>Grundy, P.J.</au><au>Lord, D.G.</au><au>Joyce, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of short-period Fe-N magnetic multilayers using an atomic nitrogen beam</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2001-07-01</date><risdate>2001</risdate><volume>37</volume><issue>4</issue><spage>2308</spage><epage>2310</epage><pages>2308-2310</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetic multilayers containing Fe-N layers with bilayer periods of between /spl sim/15-84 /spl Aring/ and sharp interfaces, are successfully grown using an atomic (free radical) nitrogen beam. The phase composition and microstructure is found to be a function of the initial Fe layer thickness prior to nitrogenation. Generally, higher N content phases are found as the initial Fe layer is reduced. Small grains (/spl sim/10 nm) are observed in multilayers containing /spl alpha/-Fe and /spl gamma/-Fe/sub 4/N phases. In these films, a perpendicular anisotropy is found for a certain thickness of the Fe layers. A stripe domain structure associated with this anisotropy is observed. The origin of this anisotropy may be induced stress caused by lattice mismatch between layers and/or lattice dilation due to N incorporation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.951156</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2001-07, Vol.37 (4), p.2308-2310
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_951156
source IEEE Electronic Library (IEL)
subjects Anisotropic magnetoresistance
Anisotropy
Atomic beams
Atomic layer deposition
Atomic measurements
Beams (radiation)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Free radicals
Interfacial magnetic properties (multilayers, magnetic quantum wells, superlattices, magnetic heterostructures)
Iron
Lattices
Magnetic multilayers
Magnetic properties and materials
Magnetic properties of surface, thin films and multilayers
Magnetism
Microstructure
Multilayers
Nitrogen
Nonhomogeneous media
Origins
Physics
title Preparation of short-period Fe-N magnetic multilayers using an atomic nitrogen beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20short-period%20Fe-N%20magnetic%20multilayers%20using%20an%20atomic%20nitrogen%20beam&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Telling,%20N.D.&rft.date=2001-07-01&rft.volume=37&rft.issue=4&rft.spage=2308&rft.epage=2310&rft.pages=2308-2310&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.951156&rft_dat=%3Cproquest_RIE%3E26886673%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884822370&rft_id=info:pmid/&rft_ieee_id=951156&rfr_iscdi=true