Highly Accurate, Fully Digital Temperature Sensor With Curvature Correction
In this paper, a highly accurate, fully digital temperature sensor with a curvature correction scheme is proposed. Conventional analog temperature sensors are complex and require a large area. Digital temperature sensors are simple with small area, but they have large inaccuracies due to process var...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-10, Vol.21 (19), p.21248-21258 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21258 |
---|---|
container_issue | 19 |
container_start_page | 21248 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Joo, Sunghwan Oh, Tae Woo Kim, Ji-Young Lee, Sumin Moon, Byoung Mo Sohn, Kyomin Jung, Seong-Ook |
description | In this paper, a highly accurate, fully digital temperature sensor with a curvature correction scheme is proposed. Conventional analog temperature sensors are complex and require a large area. Digital temperature sensors are simple with small area, but they have large inaccuracies due to process variations and curvature errors. In particular, curvature errors become more severe as the technology scales down. Thus, a highly accurate curvature correction method is proposed that can be used even in the latest technology nodes. The proposed curvature correction method achieves lower temperature errors with a smaller area than the conventional curvature correction method by using a simple correction. A temperature error that occurs up to 17 °C before the curvature correction is reduced to a range of −0.6 °C to +0.8 °C after the curvature correction. In addition, the measurement results indicate that the resolution is 0.09 °C /bit in the temperature range from 0 °C to 100 °C. The implementation in 14 nm technology node Xilinx ZCU102 field-programmable gate arrays proves that the proposed temperature sensor is very cost effective, while using only 85 slices. Compared with previous digital temperature sensors, the proposed temperature sensor achieves the smallest error and uses the smallest number of hardware resources while being implemented in a state-of-the-art technology node. |
doi_str_mv | 10.1109/JSEN.2021.3103982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9511483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511483</ieee_id><sourcerecordid>2578235488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d302f052f500fdde6861370226114e8a3d63bdef943feebef8a62fdb6c1550da3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhiMEEqXwAxBLJEZIOdv5cMYqtBSoYGgRbFHinNtUaVzsBNR_j6NUsDL5fH4f-_w4ziWBESEQ3z0tJi8jCpSMGAEWc3rkDEgQcI9EPj_uagaez6KPU-fMmA0AiaMgGjjPs3K1rvbuWIhWZw3eutO2svv7clU2WeUucbtDe9BqdBdYG6Xd97JZu0mrv_puorRG0ZSqPndOZFYZvDisQ-dtOlkmM2_--vCYjOeeoDFrvIIBlRBQGQDIosCQh4RFQGlIiI88Y0XI8gJl7DOJmKPkWUhlkYfCfgiKjA2d6_7enVafLZom3ahW1_bJlAYRpyzwObcp0qeEVsZolOlOl9tM71MCaecs7ZylnbP04MwyNz3zjbmSRpRYC_zlAMCOGZHQFkAim-b_TydWZycpUW3dWPSqR0vEPyQOrAHO2A-azYjC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578235488</pqid></control><display><type>article</type><title>Highly Accurate, Fully Digital Temperature Sensor With Curvature Correction</title><source>IEEE Electronic Library (IEL)</source><creator>Joo, Sunghwan ; Oh, Tae Woo ; Kim, Ji-Young ; Lee, Sumin ; Moon, Byoung Mo ; Sohn, Kyomin ; Jung, Seong-Ook</creator><creatorcontrib>Joo, Sunghwan ; Oh, Tae Woo ; Kim, Ji-Young ; Lee, Sumin ; Moon, Byoung Mo ; Sohn, Kyomin ; Jung, Seong-Ook</creatorcontrib><description>In this paper, a highly accurate, fully digital temperature sensor with a curvature correction scheme is proposed. Conventional analog temperature sensors are complex and require a large area. Digital temperature sensors are simple with small area, but they have large inaccuracies due to process variations and curvature errors. In particular, curvature errors become more severe as the technology scales down. Thus, a highly accurate curvature correction method is proposed that can be used even in the latest technology nodes. The proposed curvature correction method achieves lower temperature errors with a smaller area than the conventional curvature correction method by using a simple correction. A temperature error that occurs up to 17 °C before the curvature correction is reduced to a range of −0.6 °C to +0.8 °C after the curvature correction. In addition, the measurement results indicate that the resolution is 0.09 °C /bit in the temperature range from 0 °C to 100 °C. The implementation in 14 nm technology node Xilinx ZCU102 field-programmable gate arrays proves that the proposed temperature sensor is very cost effective, while using only 85 slices. Compared with previous digital temperature sensors, the proposed temperature sensor achieves the smallest error and uses the smallest number of hardware resources while being implemented in a state-of-the-art technology node.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3103982</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Calibration ; Curvature ; Curvature correction ; Engineering ; Engineering, Electrical & Electronic ; Error correction ; Field programmable gate arrays ; field-programmable gate array (FPGA) ; full-digital sensor ; Instruments & Instrumentation ; Inverters ; Physical Sciences ; Physics ; Physics, Applied ; process variations calibration ; Science & Technology ; Semiconductor device measurement ; Sensor arrays ; Sensors ; Technology ; Temperature ; Temperature distribution ; Temperature measurement ; temperature sensor ; Temperature sensors ; time domain sensor</subject><ispartof>IEEE sensors journal, 2021-10, Vol.21 (19), p.21248-21258</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000702716000017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-d302f052f500fdde6861370226114e8a3d63bdef943feebef8a62fdb6c1550da3</citedby><cites>FETCH-LOGICAL-c293t-d302f052f500fdde6861370226114e8a3d63bdef943feebef8a62fdb6c1550da3</cites><orcidid>0000-0002-8094-9843 ; 0000-0002-7545-2429 ; 0000-0001-6782-7457 ; 0000-0003-0757-2581 ; 0000-0002-4523-6047 ; 0000-0003-0535-7853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Joo, Sunghwan</creatorcontrib><creatorcontrib>Oh, Tae Woo</creatorcontrib><creatorcontrib>Kim, Ji-Young</creatorcontrib><creatorcontrib>Lee, Sumin</creatorcontrib><creatorcontrib>Moon, Byoung Mo</creatorcontrib><creatorcontrib>Sohn, Kyomin</creatorcontrib><creatorcontrib>Jung, Seong-Ook</creatorcontrib><title>Highly Accurate, Fully Digital Temperature Sensor With Curvature Correction</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><addtitle>IEEE SENS J</addtitle><description>In this paper, a highly accurate, fully digital temperature sensor with a curvature correction scheme is proposed. Conventional analog temperature sensors are complex and require a large area. Digital temperature sensors are simple with small area, but they have large inaccuracies due to process variations and curvature errors. In particular, curvature errors become more severe as the technology scales down. Thus, a highly accurate curvature correction method is proposed that can be used even in the latest technology nodes. The proposed curvature correction method achieves lower temperature errors with a smaller area than the conventional curvature correction method by using a simple correction. A temperature error that occurs up to 17 °C before the curvature correction is reduced to a range of −0.6 °C to +0.8 °C after the curvature correction. In addition, the measurement results indicate that the resolution is 0.09 °C /bit in the temperature range from 0 °C to 100 °C. The implementation in 14 nm technology node Xilinx ZCU102 field-programmable gate arrays proves that the proposed temperature sensor is very cost effective, while using only 85 slices. Compared with previous digital temperature sensors, the proposed temperature sensor achieves the smallest error and uses the smallest number of hardware resources while being implemented in a state-of-the-art technology node.</description><subject>Calibration</subject><subject>Curvature</subject><subject>Curvature correction</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Error correction</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate array (FPGA)</subject><subject>full-digital sensor</subject><subject>Instruments & Instrumentation</subject><subject>Inverters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>process variations calibration</subject><subject>Science & Technology</subject><subject>Semiconductor device measurement</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Technology</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>temperature sensor</subject><subject>Temperature sensors</subject><subject>time domain sensor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkD1PwzAQhiMEEqXwAxBLJEZIOdv5cMYqtBSoYGgRbFHinNtUaVzsBNR_j6NUsDL5fH4f-_w4ziWBESEQ3z0tJi8jCpSMGAEWc3rkDEgQcI9EPj_uagaez6KPU-fMmA0AiaMgGjjPs3K1rvbuWIhWZw3eutO2svv7clU2WeUucbtDe9BqdBdYG6Xd97JZu0mrv_puorRG0ZSqPndOZFYZvDisQ-dtOlkmM2_--vCYjOeeoDFrvIIBlRBQGQDIosCQh4RFQGlIiI88Y0XI8gJl7DOJmKPkWUhlkYfCfgiKjA2d6_7enVafLZom3ahW1_bJlAYRpyzwObcp0qeEVsZolOlOl9tM71MCaecs7ZylnbP04MwyNz3zjbmSRpRYC_zlAMCOGZHQFkAim-b_TydWZycpUW3dWPSqR0vEPyQOrAHO2A-azYjC</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Joo, Sunghwan</creator><creator>Oh, Tae Woo</creator><creator>Kim, Ji-Young</creator><creator>Lee, Sumin</creator><creator>Moon, Byoung Mo</creator><creator>Sohn, Kyomin</creator><creator>Jung, Seong-Ook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8094-9843</orcidid><orcidid>https://orcid.org/0000-0002-7545-2429</orcidid><orcidid>https://orcid.org/0000-0001-6782-7457</orcidid><orcidid>https://orcid.org/0000-0003-0757-2581</orcidid><orcidid>https://orcid.org/0000-0002-4523-6047</orcidid><orcidid>https://orcid.org/0000-0003-0535-7853</orcidid></search><sort><creationdate>20211001</creationdate><title>Highly Accurate, Fully Digital Temperature Sensor With Curvature Correction</title><author>Joo, Sunghwan ; Oh, Tae Woo ; Kim, Ji-Young ; Lee, Sumin ; Moon, Byoung Mo ; Sohn, Kyomin ; Jung, Seong-Ook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d302f052f500fdde6861370226114e8a3d63bdef943feebef8a62fdb6c1550da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calibration</topic><topic>Curvature</topic><topic>Curvature correction</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Error correction</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate array (FPGA)</topic><topic>full-digital sensor</topic><topic>Instruments & Instrumentation</topic><topic>Inverters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>process variations calibration</topic><topic>Science & Technology</topic><topic>Semiconductor device measurement</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Technology</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>temperature sensor</topic><topic>Temperature sensors</topic><topic>time domain sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joo, Sunghwan</creatorcontrib><creatorcontrib>Oh, Tae Woo</creatorcontrib><creatorcontrib>Kim, Ji-Young</creatorcontrib><creatorcontrib>Lee, Sumin</creatorcontrib><creatorcontrib>Moon, Byoung Mo</creatorcontrib><creatorcontrib>Sohn, Kyomin</creatorcontrib><creatorcontrib>Jung, Seong-Ook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joo, Sunghwan</au><au>Oh, Tae Woo</au><au>Kim, Ji-Young</au><au>Lee, Sumin</au><au>Moon, Byoung Mo</au><au>Sohn, Kyomin</au><au>Jung, Seong-Ook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Accurate, Fully Digital Temperature Sensor With Curvature Correction</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><stitle>IEEE SENS J</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>21</volume><issue>19</issue><spage>21248</spage><epage>21258</epage><pages>21248-21258</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, a highly accurate, fully digital temperature sensor with a curvature correction scheme is proposed. Conventional analog temperature sensors are complex and require a large area. Digital temperature sensors are simple with small area, but they have large inaccuracies due to process variations and curvature errors. In particular, curvature errors become more severe as the technology scales down. Thus, a highly accurate curvature correction method is proposed that can be used even in the latest technology nodes. The proposed curvature correction method achieves lower temperature errors with a smaller area than the conventional curvature correction method by using a simple correction. A temperature error that occurs up to 17 °C before the curvature correction is reduced to a range of −0.6 °C to +0.8 °C after the curvature correction. In addition, the measurement results indicate that the resolution is 0.09 °C /bit in the temperature range from 0 °C to 100 °C. The implementation in 14 nm technology node Xilinx ZCU102 field-programmable gate arrays proves that the proposed temperature sensor is very cost effective, while using only 85 slices. Compared with previous digital temperature sensors, the proposed temperature sensor achieves the smallest error and uses the smallest number of hardware resources while being implemented in a state-of-the-art technology node.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3103982</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8094-9843</orcidid><orcidid>https://orcid.org/0000-0002-7545-2429</orcidid><orcidid>https://orcid.org/0000-0001-6782-7457</orcidid><orcidid>https://orcid.org/0000-0003-0757-2581</orcidid><orcidid>https://orcid.org/0000-0002-4523-6047</orcidid><orcidid>https://orcid.org/0000-0003-0535-7853</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-10, Vol.21 (19), p.21248-21258 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9511483 |
source | IEEE Electronic Library (IEL) |
subjects | Calibration Curvature Curvature correction Engineering Engineering, Electrical & Electronic Error correction Field programmable gate arrays field-programmable gate array (FPGA) full-digital sensor Instruments & Instrumentation Inverters Physical Sciences Physics Physics, Applied process variations calibration Science & Technology Semiconductor device measurement Sensor arrays Sensors Technology Temperature Temperature distribution Temperature measurement temperature sensor Temperature sensors time domain sensor |
title | Highly Accurate, Fully Digital Temperature Sensor With Curvature Correction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Accurate,%20Fully%20Digital%20Temperature%20Sensor%20With%20Curvature%20Correction&rft.jtitle=IEEE%20sensors%20journal&rft.au=Joo,%20Sunghwan&rft.date=2021-10-01&rft.volume=21&rft.issue=19&rft.spage=21248&rft.epage=21258&rft.pages=21248-21258&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3103982&rft_dat=%3Cproquest_RIE%3E2578235488%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578235488&rft_id=info:pmid/&rft_ieee_id=9511483&rfr_iscdi=true |