A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer
With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration m...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-11, Vol.21 (21), p.23917-23925 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23925 |
---|---|
container_issue | 21 |
container_start_page | 23917 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Liu, Jianguo Li, Xiangang Yan, Shenggang Yan, Youyu Jia, Wei Zhang, Qingguo |
description | With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods. |
doi_str_mv | 10.1109/JSEN.2021.3103992 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9511482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511482</ieee_id><sourcerecordid>2588070137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-ef36bc15537b4a6658efb28286184d0cbae89ea81b04ffb17311b7f8571526023</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw74qRp0uM0jS9t48CQuEVJ54xOXTPSDo1_T6tNnGzJz2tbDyG3wEYALH94fZ8uRpxxGAlgIs_5GRmAlDoBlerzvhcsSYX6vCRXTbNhDHIl1YBMx3QRfrCis7JGG-nEVqWLti1DTedh1Q18iHT5FRGT8aFs6GO1P6xti3Ru1zW2YYstxmty4W3V4M2pDsnH43Q5eU5mb08vk_EsKTgXbYJeZK7o3hLKpTbLpEbvuOY6A52uWOEs6hytBsdS7x0oAeCU11KB5BnjYkjuj3t3MXzvsWnNJuxj3Z00XGrNFAOhOgqOVBFD00T0ZhfLrY2_BpjpbZnelultmZOtLnN3zJSI-M_nEiDVXPwBDVlkYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588070137</pqid></control><display><type>article</type><title>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jianguo ; Li, Xiangang ; Yan, Shenggang ; Yan, Youyu ; Jia, Wei ; Zhang, Qingguo</creator><creatorcontrib>Liu, Jianguo ; Li, Xiangang ; Yan, Shenggang ; Yan, Youyu ; Jia, Wei ; Zhang, Qingguo</creatorcontrib><description>With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3103992</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Calibration ; calibration method ; Computer simulation ; Decomposition ; Fluxgate magnetometers ; functional link artificial neural network (FLANN) ; linear model ; Magnetic domains ; Magnetometers ; Mathematical model ; Mathematical models ; Measurement uncertainty ; Optimization ; Parameters ; Symmetric matrices ; Systematic errors ; Taylor series ; Three axis ; Three-axis fluxgate magnetometer (TFM)</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (21), p.23917-23925</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-ef36bc15537b4a6658efb28286184d0cbae89ea81b04ffb17311b7f8571526023</citedby><orcidid>0000-0002-9555-8888 ; 0000-0002-7810-1077 ; 0000-0002-0985-1034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Li, Xiangang</creatorcontrib><creatorcontrib>Yan, Shenggang</creatorcontrib><creatorcontrib>Yan, Youyu</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhang, Qingguo</creatorcontrib><title>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>calibration method</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Fluxgate magnetometers</subject><subject>functional link artificial neural network (FLANN)</subject><subject>linear model</subject><subject>Magnetic domains</subject><subject>Magnetometers</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Symmetric matrices</subject><subject>Systematic errors</subject><subject>Taylor series</subject><subject>Three axis</subject><subject>Three-axis fluxgate magnetometer (TFM)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw74qRp0uM0jS9t48CQuEVJ54xOXTPSDo1_T6tNnGzJz2tbDyG3wEYALH94fZ8uRpxxGAlgIs_5GRmAlDoBlerzvhcsSYX6vCRXTbNhDHIl1YBMx3QRfrCis7JGG-nEVqWLti1DTedh1Q18iHT5FRGT8aFs6GO1P6xti3Ru1zW2YYstxmty4W3V4M2pDsnH43Q5eU5mb08vk_EsKTgXbYJeZK7o3hLKpTbLpEbvuOY6A52uWOEs6hytBsdS7x0oAeCU11KB5BnjYkjuj3t3MXzvsWnNJuxj3Z00XGrNFAOhOgqOVBFD00T0ZhfLrY2_BpjpbZnelultmZOtLnN3zJSI-M_nEiDVXPwBDVlkYA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Jianguo</creator><creator>Li, Xiangang</creator><creator>Yan, Shenggang</creator><creator>Yan, Youyu</creator><creator>Jia, Wei</creator><creator>Zhang, Qingguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9555-8888</orcidid><orcidid>https://orcid.org/0000-0002-7810-1077</orcidid><orcidid>https://orcid.org/0000-0002-0985-1034</orcidid></search><sort><creationdate>20211101</creationdate><title>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</title><author>Liu, Jianguo ; Li, Xiangang ; Yan, Shenggang ; Yan, Youyu ; Jia, Wei ; Zhang, Qingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-ef36bc15537b4a6658efb28286184d0cbae89ea81b04ffb17311b7f8571526023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>calibration method</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Fluxgate magnetometers</topic><topic>functional link artificial neural network (FLANN)</topic><topic>linear model</topic><topic>Magnetic domains</topic><topic>Magnetometers</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Symmetric matrices</topic><topic>Systematic errors</topic><topic>Taylor series</topic><topic>Three axis</topic><topic>Three-axis fluxgate magnetometer (TFM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Li, Xiangang</creatorcontrib><creatorcontrib>Yan, Shenggang</creatorcontrib><creatorcontrib>Yan, Youyu</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhang, Qingguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jianguo</au><au>Li, Xiangang</au><au>Yan, Shenggang</au><au>Yan, Youyu</au><au>Jia, Wei</au><au>Zhang, Qingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>23917</spage><epage>23925</epage><pages>23917-23925</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3103992</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9555-8888</orcidid><orcidid>https://orcid.org/0000-0002-7810-1077</orcidid><orcidid>https://orcid.org/0000-0002-0985-1034</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-11, Vol.21 (21), p.23917-23925 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9511482 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Calibration calibration method Computer simulation Decomposition Fluxgate magnetometers functional link artificial neural network (FLANN) linear model Magnetic domains Magnetometers Mathematical model Mathematical models Measurement uncertainty Optimization Parameters Symmetric matrices Systematic errors Taylor series Three axis Three-axis fluxgate magnetometer (TFM) |
title | A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Linear%20Calibration%20Model%20for%20Three-Axis%20Fluxgate%20Magnetometer&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Jianguo&rft.date=2021-11-01&rft.volume=21&rft.issue=21&rft.spage=23917&rft.epage=23925&rft.pages=23917-23925&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3103992&rft_dat=%3Cproquest_RIE%3E2588070137%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588070137&rft_id=info:pmid/&rft_ieee_id=9511482&rfr_iscdi=true |