A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer

With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-11, Vol.21 (21), p.23917-23925
Hauptverfasser: Liu, Jianguo, Li, Xiangang, Yan, Shenggang, Yan, Youyu, Jia, Wei, Zhang, Qingguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23925
container_issue 21
container_start_page 23917
container_title IEEE sensors journal
container_volume 21
creator Liu, Jianguo
Li, Xiangang
Yan, Shenggang
Yan, Youyu
Jia, Wei
Zhang, Qingguo
description With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods.
doi_str_mv 10.1109/JSEN.2021.3103992
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9511482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511482</ieee_id><sourcerecordid>2588070137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-ef36bc15537b4a6658efb28286184d0cbae89ea81b04ffb17311b7f8571526023</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw74qRp0uM0jS9t48CQuEVJ54xOXTPSDo1_T6tNnGzJz2tbDyG3wEYALH94fZ8uRpxxGAlgIs_5GRmAlDoBlerzvhcsSYX6vCRXTbNhDHIl1YBMx3QRfrCis7JGG-nEVqWLti1DTedh1Q18iHT5FRGT8aFs6GO1P6xti3Ru1zW2YYstxmty4W3V4M2pDsnH43Q5eU5mb08vk_EsKTgXbYJeZK7o3hLKpTbLpEbvuOY6A52uWOEs6hytBsdS7x0oAeCU11KB5BnjYkjuj3t3MXzvsWnNJuxj3Z00XGrNFAOhOgqOVBFD00T0ZhfLrY2_BpjpbZnelultmZOtLnN3zJSI-M_nEiDVXPwBDVlkYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588070137</pqid></control><display><type>article</type><title>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jianguo ; Li, Xiangang ; Yan, Shenggang ; Yan, Youyu ; Jia, Wei ; Zhang, Qingguo</creator><creatorcontrib>Liu, Jianguo ; Li, Xiangang ; Yan, Shenggang ; Yan, Youyu ; Jia, Wei ; Zhang, Qingguo</creatorcontrib><description>With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3103992</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Calibration ; calibration method ; Computer simulation ; Decomposition ; Fluxgate magnetometers ; functional link artificial neural network (FLANN) ; linear model ; Magnetic domains ; Magnetometers ; Mathematical model ; Mathematical models ; Measurement uncertainty ; Optimization ; Parameters ; Symmetric matrices ; Systematic errors ; Taylor series ; Three axis ; Three-axis fluxgate magnetometer (TFM)</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (21), p.23917-23925</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-ef36bc15537b4a6658efb28286184d0cbae89ea81b04ffb17311b7f8571526023</citedby><orcidid>0000-0002-9555-8888 ; 0000-0002-7810-1077 ; 0000-0002-0985-1034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Li, Xiangang</creatorcontrib><creatorcontrib>Yan, Shenggang</creatorcontrib><creatorcontrib>Yan, Youyu</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhang, Qingguo</creatorcontrib><title>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>calibration method</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Fluxgate magnetometers</subject><subject>functional link artificial neural network (FLANN)</subject><subject>linear model</subject><subject>Magnetic domains</subject><subject>Magnetometers</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Symmetric matrices</subject><subject>Systematic errors</subject><subject>Taylor series</subject><subject>Three axis</subject><subject>Three-axis fluxgate magnetometer (TFM)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw74qRp0uM0jS9t48CQuEVJ54xOXTPSDo1_T6tNnGzJz2tbDyG3wEYALH94fZ8uRpxxGAlgIs_5GRmAlDoBlerzvhcsSYX6vCRXTbNhDHIl1YBMx3QRfrCis7JGG-nEVqWLti1DTedh1Q18iHT5FRGT8aFs6GO1P6xti3Ru1zW2YYstxmty4W3V4M2pDsnH43Q5eU5mb08vk_EsKTgXbYJeZK7o3hLKpTbLpEbvuOY6A52uWOEs6hytBsdS7x0oAeCU11KB5BnjYkjuj3t3MXzvsWnNJuxj3Z00XGrNFAOhOgqOVBFD00T0ZhfLrY2_BpjpbZnelultmZOtLnN3zJSI-M_nEiDVXPwBDVlkYA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Jianguo</creator><creator>Li, Xiangang</creator><creator>Yan, Shenggang</creator><creator>Yan, Youyu</creator><creator>Jia, Wei</creator><creator>Zhang, Qingguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9555-8888</orcidid><orcidid>https://orcid.org/0000-0002-7810-1077</orcidid><orcidid>https://orcid.org/0000-0002-0985-1034</orcidid></search><sort><creationdate>20211101</creationdate><title>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</title><author>Liu, Jianguo ; Li, Xiangang ; Yan, Shenggang ; Yan, Youyu ; Jia, Wei ; Zhang, Qingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-ef36bc15537b4a6658efb28286184d0cbae89ea81b04ffb17311b7f8571526023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>calibration method</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Fluxgate magnetometers</topic><topic>functional link artificial neural network (FLANN)</topic><topic>linear model</topic><topic>Magnetic domains</topic><topic>Magnetometers</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Symmetric matrices</topic><topic>Systematic errors</topic><topic>Taylor series</topic><topic>Three axis</topic><topic>Three-axis fluxgate magnetometer (TFM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Li, Xiangang</creatorcontrib><creatorcontrib>Yan, Shenggang</creatorcontrib><creatorcontrib>Yan, Youyu</creatorcontrib><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Zhang, Qingguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jianguo</au><au>Li, Xiangang</au><au>Yan, Shenggang</au><au>Yan, Youyu</au><au>Jia, Wei</au><au>Zhang, Qingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>21</volume><issue>21</issue><spage>23917</spage><epage>23925</epage><pages>23917-23925</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>With low cost, simple structure and high accuracy, the three-axis fluxgate magnetometer (TFM) has been frequently used in many fields. However, the systematic errors are a major obstacle to the performance of TFM. Based on Taylor expansion and Cholesky decomposition, a new linear error calibration model is proposed from the general error model of TFM. In our new model, the parameter matrix can be decomposed to two parts: one is completely equivalent to the parameter matrix of the traditional linear model, and the other is a matrix containing second-order terms composed of error parameters, which was neglected in the traditional linear model. Thus, compared with the traditional model, our new linear model can acquire better calibration performances. In simulations, the functional link artificial neural network algorithm is provided to solve the model parameters. Simulation results show that the new model improves the calibration effect by 32.9 to 33.8% compared with the existing linear calibration model. After that, a single three-axis fluxgate magnetometer experimental platform is set up and related physical experiment is carried out. The results further prove the advantages and the practical value of the proposed model. Compared with the reference method, the effect is improved by 79.3%. The conclusions of this paper can expand the linear calibration method of three-axis magnetometer and improve the accuracy of such methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3103992</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9555-8888</orcidid><orcidid>https://orcid.org/0000-0002-7810-1077</orcidid><orcidid>https://orcid.org/0000-0002-0985-1034</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-11, Vol.21 (21), p.23917-23925
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9511482
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Calibration
calibration method
Computer simulation
Decomposition
Fluxgate magnetometers
functional link artificial neural network (FLANN)
linear model
Magnetic domains
Magnetometers
Mathematical model
Mathematical models
Measurement uncertainty
Optimization
Parameters
Symmetric matrices
Systematic errors
Taylor series
Three axis
Three-axis fluxgate magnetometer (TFM)
title A Novel Linear Calibration Model for Three-Axis Fluxgate Magnetometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Linear%20Calibration%20Model%20for%20Three-Axis%20Fluxgate%20Magnetometer&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Jianguo&rft.date=2021-11-01&rft.volume=21&rft.issue=21&rft.spage=23917&rft.epage=23925&rft.pages=23917-23925&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3103992&rft_dat=%3Cproquest_RIE%3E2588070137%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588070137&rft_id=info:pmid/&rft_ieee_id=9511482&rfr_iscdi=true