Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls
Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational social systems 2022-06, Vol.9 (3), p.770-780 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | 3 |
container_start_page | 770 |
container_title | IEEE transactions on computational social systems |
container_volume | 9 |
creator | Negahban, Ashkan Giabbanelli, Philippe J. |
description | Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC. |
doi_str_mv | 10.1109/TCSS.2021.3101794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9509839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9509839</ieee_id><sourcerecordid>2670208347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOHQ_QHwJ-GrnTdI0jW_bUDcYTNgE30qapprRNTVpB_v3tm74dM_hnnO5fAjdEZgQAvJpO99sJhQomTACRMj4Ao0oEywSsUguB01lJGn8eY3GIewAgFDOBYUR6hbH3NsCT79M3UYzFUyBN3bfVaq1rsauxNPCNX96Zr7VwTqPVd1nnLaqwsu6NV7pYR-e8bTqXd03DyY84nXTON92tW3tYIfWu21LVVXhFl31M5jxed6gj9eX7XwRrdZvy_l0FWlKWRuRnLAyNkQmOTc616KAooBcxiQXkqQ58JjzkqSgheSCJZRBqSnXyuiSEq7YDXo43W28--lMaLOd6_oPq5DRRACFlMWiT5FTSnsXgjdl1ni7V_6YEcgGwNkAOBsAZ2fAfef-1LHGmP-85CBTJtkvIb13sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670208347</pqid></control><display><type>article</type><title>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</title><source>IEEE Electronic Library (IEL)</source><creator>Negahban, Ashkan ; Giabbanelli, Philippe J.</creator><creatorcontrib>Negahban, Ashkan ; Giabbanelli, Philippe J.</creatorcontrib><description>Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2021.3101794</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Agent-based model ; Agent-based models ; Computational modeling ; consumer behavior ; Context modeling ; Decision making ; Hybrid systems ; innovation diffusion ; Machine learning ; machine learning (ML) ; Mathematical model ; Probabilistic logic ; Social factors ; Social interaction ; Soft computing ; soft computing (SC) ; Technological innovation</subject><ispartof>IEEE transactions on computational social systems, 2022-06, Vol.9 (3), p.770-780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</citedby><cites>FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</cites><orcidid>0000-0001-6816-355X ; 0000-0003-3393-3395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9509839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9509839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Negahban, Ashkan</creatorcontrib><creatorcontrib>Giabbanelli, Philippe J.</creatorcontrib><title>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC.</description><subject>Adaptation models</subject><subject>Agent-based model</subject><subject>Agent-based models</subject><subject>Computational modeling</subject><subject>consumer behavior</subject><subject>Context modeling</subject><subject>Decision making</subject><subject>Hybrid systems</subject><subject>innovation diffusion</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Mathematical model</subject><subject>Probabilistic logic</subject><subject>Social factors</subject><subject>Social interaction</subject><subject>Soft computing</subject><subject>soft computing (SC)</subject><subject>Technological innovation</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOHQ_QHwJ-GrnTdI0jW_bUDcYTNgE30qapprRNTVpB_v3tm74dM_hnnO5fAjdEZgQAvJpO99sJhQomTACRMj4Ao0oEywSsUguB01lJGn8eY3GIewAgFDOBYUR6hbH3NsCT79M3UYzFUyBN3bfVaq1rsauxNPCNX96Zr7VwTqPVd1nnLaqwsu6NV7pYR-e8bTqXd03DyY84nXTON92tW3tYIfWu21LVVXhFl31M5jxed6gj9eX7XwRrdZvy_l0FWlKWRuRnLAyNkQmOTc616KAooBcxiQXkqQ58JjzkqSgheSCJZRBqSnXyuiSEq7YDXo43W28--lMaLOd6_oPq5DRRACFlMWiT5FTSnsXgjdl1ni7V_6YEcgGwNkAOBsAZ2fAfef-1LHGmP-85CBTJtkvIb13sw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Negahban, Ashkan</creator><creator>Giabbanelli, Philippe J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6816-355X</orcidid><orcidid>https://orcid.org/0000-0003-3393-3395</orcidid></search><sort><creationdate>20220601</creationdate><title>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</title><author>Negahban, Ashkan ; Giabbanelli, Philippe J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Agent-based model</topic><topic>Agent-based models</topic><topic>Computational modeling</topic><topic>consumer behavior</topic><topic>Context modeling</topic><topic>Decision making</topic><topic>Hybrid systems</topic><topic>innovation diffusion</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Mathematical model</topic><topic>Probabilistic logic</topic><topic>Social factors</topic><topic>Social interaction</topic><topic>Soft computing</topic><topic>soft computing (SC)</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negahban, Ashkan</creatorcontrib><creatorcontrib>Giabbanelli, Philippe J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Negahban, Ashkan</au><au>Giabbanelli, Philippe J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>3</issue><spage>770</spage><epage>780</epage><pages>770-780</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2021.3101794</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6816-355X</orcidid><orcidid>https://orcid.org/0000-0003-3393-3395</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-924X |
ispartof | IEEE transactions on computational social systems, 2022-06, Vol.9 (3), p.770-780 |
issn | 2329-924X 2373-7476 |
language | eng |
recordid | cdi_ieee_primary_9509839 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Agent-based model Agent-based models Computational modeling consumer behavior Context modeling Decision making Hybrid systems innovation diffusion Machine learning machine learning (ML) Mathematical model Probabilistic logic Social factors Social interaction Soft computing soft computing (SC) Technological innovation |
title | Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Agent-Based%20Simulation%20of%20Adoption%20Behavior%20and%20Social%20Interactions:%20Alternatives,%20Opportunities,%20and%20Pitfalls&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Negahban,%20Ashkan&rft.date=2022-06-01&rft.volume=9&rft.issue=3&rft.spage=770&rft.epage=780&rft.pages=770-780&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2021.3101794&rft_dat=%3Cproquest_RIE%3E2670208347%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670208347&rft_id=info:pmid/&rft_ieee_id=9509839&rfr_iscdi=true |