Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls

Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2022-06, Vol.9 (3), p.770-780
Hauptverfasser: Negahban, Ashkan, Giabbanelli, Philippe J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 780
container_issue 3
container_start_page 770
container_title IEEE transactions on computational social systems
container_volume 9
creator Negahban, Ashkan
Giabbanelli, Philippe J.
description Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC.
doi_str_mv 10.1109/TCSS.2021.3101794
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9509839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9509839</ieee_id><sourcerecordid>2670208347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOHQ_QHwJ-GrnTdI0jW_bUDcYTNgE30qapprRNTVpB_v3tm74dM_hnnO5fAjdEZgQAvJpO99sJhQomTACRMj4Ao0oEywSsUguB01lJGn8eY3GIewAgFDOBYUR6hbH3NsCT79M3UYzFUyBN3bfVaq1rsauxNPCNX96Zr7VwTqPVd1nnLaqwsu6NV7pYR-e8bTqXd03DyY84nXTON92tW3tYIfWu21LVVXhFl31M5jxed6gj9eX7XwRrdZvy_l0FWlKWRuRnLAyNkQmOTc616KAooBcxiQXkqQ58JjzkqSgheSCJZRBqSnXyuiSEq7YDXo43W28--lMaLOd6_oPq5DRRACFlMWiT5FTSnsXgjdl1ni7V_6YEcgGwNkAOBsAZ2fAfef-1LHGmP-85CBTJtkvIb13sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670208347</pqid></control><display><type>article</type><title>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</title><source>IEEE Electronic Library (IEL)</source><creator>Negahban, Ashkan ; Giabbanelli, Philippe J.</creator><creatorcontrib>Negahban, Ashkan ; Giabbanelli, Philippe J.</creatorcontrib><description>Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2021.3101794</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Agent-based model ; Agent-based models ; Computational modeling ; consumer behavior ; Context modeling ; Decision making ; Hybrid systems ; innovation diffusion ; Machine learning ; machine learning (ML) ; Mathematical model ; Probabilistic logic ; Social factors ; Social interaction ; Soft computing ; soft computing (SC) ; Technological innovation</subject><ispartof>IEEE transactions on computational social systems, 2022-06, Vol.9 (3), p.770-780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</citedby><cites>FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</cites><orcidid>0000-0001-6816-355X ; 0000-0003-3393-3395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9509839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9509839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Negahban, Ashkan</creatorcontrib><creatorcontrib>Giabbanelli, Philippe J.</creatorcontrib><title>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC.</description><subject>Adaptation models</subject><subject>Agent-based model</subject><subject>Agent-based models</subject><subject>Computational modeling</subject><subject>consumer behavior</subject><subject>Context modeling</subject><subject>Decision making</subject><subject>Hybrid systems</subject><subject>innovation diffusion</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Mathematical model</subject><subject>Probabilistic logic</subject><subject>Social factors</subject><subject>Social interaction</subject><subject>Soft computing</subject><subject>soft computing (SC)</subject><subject>Technological innovation</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOHQ_QHwJ-GrnTdI0jW_bUDcYTNgE30qapprRNTVpB_v3tm74dM_hnnO5fAjdEZgQAvJpO99sJhQomTACRMj4Ao0oEywSsUguB01lJGn8eY3GIewAgFDOBYUR6hbH3NsCT79M3UYzFUyBN3bfVaq1rsauxNPCNX96Zr7VwTqPVd1nnLaqwsu6NV7pYR-e8bTqXd03DyY84nXTON92tW3tYIfWu21LVVXhFl31M5jxed6gj9eX7XwRrdZvy_l0FWlKWRuRnLAyNkQmOTc616KAooBcxiQXkqQ58JjzkqSgheSCJZRBqSnXyuiSEq7YDXo43W28--lMaLOd6_oPq5DRRACFlMWiT5FTSnsXgjdl1ni7V_6YEcgGwNkAOBsAZ2fAfef-1LHGmP-85CBTJtkvIb13sw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Negahban, Ashkan</creator><creator>Giabbanelli, Philippe J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6816-355X</orcidid><orcidid>https://orcid.org/0000-0003-3393-3395</orcidid></search><sort><creationdate>20220601</creationdate><title>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</title><author>Negahban, Ashkan ; Giabbanelli, Philippe J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-1b13f4e196b5ecbc7d0dd0b941b7918b05455f180c795736230fc25caecf215a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Agent-based model</topic><topic>Agent-based models</topic><topic>Computational modeling</topic><topic>consumer behavior</topic><topic>Context modeling</topic><topic>Decision making</topic><topic>Hybrid systems</topic><topic>innovation diffusion</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Mathematical model</topic><topic>Probabilistic logic</topic><topic>Social factors</topic><topic>Social interaction</topic><topic>Soft computing</topic><topic>soft computing (SC)</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negahban, Ashkan</creatorcontrib><creatorcontrib>Giabbanelli, Philippe J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Negahban, Ashkan</au><au>Giabbanelli, Philippe J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>3</issue><spage>770</spage><epage>780</epage><pages>770-780</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Agent-based modeling and simulation (ABMS) is a powerful analysis tool that has led to significant contributions in the field of innovation diffusion. In this article, we examine the potential and pitfalls of extending adoption models used in agent-based diffusion via machine learning (ML) and soft computing (SC) techniques. More specifically, we 1) classify features related to agents' decision-making and social interactions that are generally not considered in current adoption models; 2) present, along with illustrative examples, an assessment of the potential of hybrid ABMS involving ML and SC to incorporate and model these features; and 3) identify essential considerations for the implementation and applicability of such adoption models. To support future efforts in developing computational systems based on these hybrid ABMS, the article also highlights research areas to further investigate at the intersection of ABMS, ML, and SC.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2021.3101794</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6816-355X</orcidid><orcidid>https://orcid.org/0000-0003-3393-3395</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2022-06, Vol.9 (3), p.770-780
issn 2329-924X
2373-7476
language eng
recordid cdi_ieee_primary_9509839
source IEEE Electronic Library (IEL)
subjects Adaptation models
Agent-based model
Agent-based models
Computational modeling
consumer behavior
Context modeling
Decision making
Hybrid systems
innovation diffusion
Machine learning
machine learning (ML)
Mathematical model
Probabilistic logic
Social factors
Social interaction
Soft computing
soft computing (SC)
Technological innovation
title Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions: Alternatives, Opportunities, and Pitfalls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Agent-Based%20Simulation%20of%20Adoption%20Behavior%20and%20Social%20Interactions:%20Alternatives,%20Opportunities,%20and%20Pitfalls&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Negahban,%20Ashkan&rft.date=2022-06-01&rft.volume=9&rft.issue=3&rft.spage=770&rft.epage=780&rft.pages=770-780&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2021.3101794&rft_dat=%3Cproquest_RIE%3E2670208347%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670208347&rft_id=info:pmid/&rft_ieee_id=9509839&rfr_iscdi=true