Fast Online Packet Classification With Convolutional Neural Network
Packet classification is a critical component in network appliances. Software Defined Networking and cloud computing update the rulesets frequently for flexible policy configuration. Tuple Space Search (TSS), implemented in Open vSwitch (OVS), achieves fast rule updating at the sacrifice of the clas...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2021-12, Vol.29 (6), p.2765-2778 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2778 |
---|---|
container_issue | 6 |
container_start_page | 2765 |
container_title | IEEE/ACM transactions on networking |
container_volume | 29 |
creator | Zhang, Xinyi Xie, Gaogang Wang, Xin Zhang, Penghao Li, Yanbiao Salamatian, Kave |
description | Packet classification is a critical component in network appliances. Software Defined Networking and cloud computing update the rulesets frequently for flexible policy configuration. Tuple Space Search (TSS), implemented in Open vSwitch (OVS), achieves fast rule updating at the sacrifice of the classification rate. In TSS, each tuple is managed by a hash table and classifying a packet needs to go through all hash tables. Merging tuples can reduce the number of hash tables, but inevitably increases the hash conflicts that may even worsen the classification performance in some cases. No existing algorithm meets the need of both fast packet classification and online rule updating. In this paper, we propose Convolutional Neural Network (CNN)-based Range Partition (CRP) to achieve fast packet classification and online update simultaneously. CRP exploits CNN-based image recognition to quickly partition tuples into range spaces upon the change of ruleset distribution, which reduces hash operations while avoiding rule overlapping caused by hashing many rules to the same location of the hash table. Experimental results demonstrate that CRP achieves 3.2\times classification speed and 4.2\times update speed on average compared with state-of-the-art algorithms. We also implement CRP in OVS. The throughput of CRP-OVS is 10\times that of native OVS. |
doi_str_mv | 10.1109/TNET.2021.3100114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9509371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9509371</ieee_id><sourcerecordid>2610984326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7f627e265331f9bb8ca18f36ef02f26401293218dafa0005a292f5f6dc71c6a33</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAIhLJU4cOuxkTZvjVG0Mado4DHGMsi7RspVmNO0Qb09K0U62rO-3rY-Qe4QRIojn9XK6HlGgOGIIgDi-IANMkiymCeeXoQfOYs4FvSY33u8DwoDyAclnyjfRqiptpaM3VRx0E-Wl8t4aW6jGuir6sM0uyl11cmXbDVQZLXVb_5Xm29WHW3JlVOn13X8dkvfZdJ3P48Xq5TWfLOKC0bSJU8NpqilPGEMjNpusUJgZxrUBaigfA1LBKGZbZRQAJIoKahLDt0WKBVeMDclTv3enSnms7aeqf6RTVs4nC9nNgKUoQPATBvaxZ4-1-2q1b-TetXX43UvKg7BszCgPFPZUUTvva23OaxFk51V2XmXnVf57DZmHPmO11mdeJCDCdfYLRKlxyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610984326</pqid></control><display><type>article</type><title>Fast Online Packet Classification With Convolutional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xinyi ; Xie, Gaogang ; Wang, Xin ; Zhang, Penghao ; Li, Yanbiao ; Salamatian, Kave</creator><creatorcontrib>Zhang, Xinyi ; Xie, Gaogang ; Wang, Xin ; Zhang, Penghao ; Li, Yanbiao ; Salamatian, Kave</creatorcontrib><description><![CDATA[Packet classification is a critical component in network appliances. Software Defined Networking and cloud computing update the rulesets frequently for flexible policy configuration. Tuple Space Search (TSS), implemented in Open vSwitch (OVS), achieves fast rule updating at the sacrifice of the classification rate. In TSS, each tuple is managed by a hash table and classifying a packet needs to go through all hash tables. Merging tuples can reduce the number of hash tables, but inevitably increases the hash conflicts that may even worsen the classification performance in some cases. No existing algorithm meets the need of both fast packet classification and online rule updating. In this paper, we propose Convolutional Neural Network (CNN)-based Range Partition (CRP) to achieve fast packet classification and online update simultaneously. CRP exploits CNN-based image recognition to quickly partition tuples into range spaces upon the change of ruleset distribution, which reduces hash operations while avoiding rule overlapping caused by hashing many rules to the same location of the hash table. Experimental results demonstrate that CRP achieves <inline-formula> <tex-math notation="LaTeX">3.2\times </tex-math></inline-formula> classification speed and <inline-formula> <tex-math notation="LaTeX">4.2\times </tex-math></inline-formula> update speed on average compared with state-of-the-art algorithms. We also implement CRP in OVS. The throughput of CRP-OVS is <inline-formula> <tex-math notation="LaTeX">10\times </tex-math></inline-formula> that of native OVS.]]></description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2021.3100114</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Benchmarks ; Classification ; Cloud computing ; Computer Science ; Convolutional neural networks ; Critical components ; Decision trees ; Image classification ; Image recognition ; IP networks ; Merging ; Networking and Internet Architecture ; Neural networks ; Object recognition ; Open vSwitch (OVS) ; Packet classification ; Packets (communication) ; Software ; Software Defined Networking (SDN) ; Software-defined networking ; Transforms</subject><ispartof>IEEE/ACM transactions on networking, 2021-12, Vol.29 (6), p.2765-2778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7f627e265331f9bb8ca18f36ef02f26401293218dafa0005a292f5f6dc71c6a33</citedby><cites>FETCH-LOGICAL-c327t-7f627e265331f9bb8ca18f36ef02f26401293218dafa0005a292f5f6dc71c6a33</cites><orcidid>0000-0002-6739-3676 ; 0000-0003-4964-1135 ; 0000-0001-8639-3818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9509371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9509371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03719096$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Xie, Gaogang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Penghao</creatorcontrib><creatorcontrib>Li, Yanbiao</creatorcontrib><creatorcontrib>Salamatian, Kave</creatorcontrib><title>Fast Online Packet Classification With Convolutional Neural Network</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description><![CDATA[Packet classification is a critical component in network appliances. Software Defined Networking and cloud computing update the rulesets frequently for flexible policy configuration. Tuple Space Search (TSS), implemented in Open vSwitch (OVS), achieves fast rule updating at the sacrifice of the classification rate. In TSS, each tuple is managed by a hash table and classifying a packet needs to go through all hash tables. Merging tuples can reduce the number of hash tables, but inevitably increases the hash conflicts that may even worsen the classification performance in some cases. No existing algorithm meets the need of both fast packet classification and online rule updating. In this paper, we propose Convolutional Neural Network (CNN)-based Range Partition (CRP) to achieve fast packet classification and online update simultaneously. CRP exploits CNN-based image recognition to quickly partition tuples into range spaces upon the change of ruleset distribution, which reduces hash operations while avoiding rule overlapping caused by hashing many rules to the same location of the hash table. Experimental results demonstrate that CRP achieves <inline-formula> <tex-math notation="LaTeX">3.2\times </tex-math></inline-formula> classification speed and <inline-formula> <tex-math notation="LaTeX">4.2\times </tex-math></inline-formula> update speed on average compared with state-of-the-art algorithms. We also implement CRP in OVS. The throughput of CRP-OVS is <inline-formula> <tex-math notation="LaTeX">10\times </tex-math></inline-formula> that of native OVS.]]></description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Benchmarks</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Computer Science</subject><subject>Convolutional neural networks</subject><subject>Critical components</subject><subject>Decision trees</subject><subject>Image classification</subject><subject>Image recognition</subject><subject>IP networks</subject><subject>Merging</subject><subject>Networking and Internet Architecture</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Open vSwitch (OVS)</subject><subject>Packet classification</subject><subject>Packets (communication)</subject><subject>Software</subject><subject>Software Defined Networking (SDN)</subject><subject>Software-defined networking</subject><subject>Transforms</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAMhiMEEmPwAIhLJU4cOuxkTZvjVG0Mado4DHGMsi7RspVmNO0Qb09K0U62rO-3rY-Qe4QRIojn9XK6HlGgOGIIgDi-IANMkiymCeeXoQfOYs4FvSY33u8DwoDyAclnyjfRqiptpaM3VRx0E-Wl8t4aW6jGuir6sM0uyl11cmXbDVQZLXVb_5Xm29WHW3JlVOn13X8dkvfZdJ3P48Xq5TWfLOKC0bSJU8NpqilPGEMjNpusUJgZxrUBaigfA1LBKGZbZRQAJIoKahLDt0WKBVeMDclTv3enSnms7aeqf6RTVs4nC9nNgKUoQPATBvaxZ4-1-2q1b-TetXX43UvKg7BszCgPFPZUUTvva23OaxFk51V2XmXnVf57DZmHPmO11mdeJCDCdfYLRKlxyw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Zhang, Xinyi</creator><creator>Xie, Gaogang</creator><creator>Wang, Xin</creator><creator>Zhang, Penghao</creator><creator>Li, Yanbiao</creator><creator>Salamatian, Kave</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE/ACM</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6739-3676</orcidid><orcidid>https://orcid.org/0000-0003-4964-1135</orcidid><orcidid>https://orcid.org/0000-0001-8639-3818</orcidid></search><sort><creationdate>202112</creationdate><title>Fast Online Packet Classification With Convolutional Neural Network</title><author>Zhang, Xinyi ; Xie, Gaogang ; Wang, Xin ; Zhang, Penghao ; Li, Yanbiao ; Salamatian, Kave</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7f627e265331f9bb8ca18f36ef02f26401293218dafa0005a292f5f6dc71c6a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Benchmarks</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Computer Science</topic><topic>Convolutional neural networks</topic><topic>Critical components</topic><topic>Decision trees</topic><topic>Image classification</topic><topic>Image recognition</topic><topic>IP networks</topic><topic>Merging</topic><topic>Networking and Internet Architecture</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Open vSwitch (OVS)</topic><topic>Packet classification</topic><topic>Packets (communication)</topic><topic>Software</topic><topic>Software Defined Networking (SDN)</topic><topic>Software-defined networking</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Xie, Gaogang</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Penghao</creatorcontrib><creatorcontrib>Li, Yanbiao</creatorcontrib><creatorcontrib>Salamatian, Kave</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xinyi</au><au>Xie, Gaogang</au><au>Wang, Xin</au><au>Zhang, Penghao</au><au>Li, Yanbiao</au><au>Salamatian, Kave</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Online Packet Classification With Convolutional Neural Network</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2021-12</date><risdate>2021</risdate><volume>29</volume><issue>6</issue><spage>2765</spage><epage>2778</epage><pages>2765-2778</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract><![CDATA[Packet classification is a critical component in network appliances. Software Defined Networking and cloud computing update the rulesets frequently for flexible policy configuration. Tuple Space Search (TSS), implemented in Open vSwitch (OVS), achieves fast rule updating at the sacrifice of the classification rate. In TSS, each tuple is managed by a hash table and classifying a packet needs to go through all hash tables. Merging tuples can reduce the number of hash tables, but inevitably increases the hash conflicts that may even worsen the classification performance in some cases. No existing algorithm meets the need of both fast packet classification and online rule updating. In this paper, we propose Convolutional Neural Network (CNN)-based Range Partition (CRP) to achieve fast packet classification and online update simultaneously. CRP exploits CNN-based image recognition to quickly partition tuples into range spaces upon the change of ruleset distribution, which reduces hash operations while avoiding rule overlapping caused by hashing many rules to the same location of the hash table. Experimental results demonstrate that CRP achieves <inline-formula> <tex-math notation="LaTeX">3.2\times </tex-math></inline-formula> classification speed and <inline-formula> <tex-math notation="LaTeX">4.2\times </tex-math></inline-formula> update speed on average compared with state-of-the-art algorithms. We also implement CRP in OVS. The throughput of CRP-OVS is <inline-formula> <tex-math notation="LaTeX">10\times </tex-math></inline-formula> that of native OVS.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2021.3100114</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6739-3676</orcidid><orcidid>https://orcid.org/0000-0003-4964-1135</orcidid><orcidid>https://orcid.org/0000-0001-8639-3818</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2021-12, Vol.29 (6), p.2765-2778 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_ieee_primary_9509371 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Benchmarks Classification Cloud computing Computer Science Convolutional neural networks Critical components Decision trees Image classification Image recognition IP networks Merging Networking and Internet Architecture Neural networks Object recognition Open vSwitch (OVS) Packet classification Packets (communication) Software Software Defined Networking (SDN) Software-defined networking Transforms |
title | Fast Online Packet Classification With Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Online%20Packet%20Classification%20With%20Convolutional%20Neural%20Network&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Zhang,%20Xinyi&rft.date=2021-12&rft.volume=29&rft.issue=6&rft.spage=2765&rft.epage=2778&rft.pages=2765-2778&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2021.3100114&rft_dat=%3Cproquest_RIE%3E2610984326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610984326&rft_id=info:pmid/&rft_ieee_id=9509371&rfr_iscdi=true |