Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes

It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-10, Vol.6 (4), p.8387-8393
Hauptverfasser: Lisus, Daniil, Cossette, Charles Champagne, Shalaby, Mohammed, Forbes, James Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8393
container_issue 4
container_start_page 8387
container_title IEEE robotics and automation letters
container_volume 6
creator Lisus, Daniil
Cossette, Charles Champagne
Shalaby, Mohammed
Forbes, James Richard
description It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements.
doi_str_mv 10.1109/LRA.2021.3102300
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9508865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508865</ieee_id><sourcerecordid>2571221274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOObeBV8CPndekrZpHseYmzBQNsceQ5pcZ8ZsZ9IJ_ve2bIhPd9x93_Hdj5B7BmPGQD0tV5MxB87GggEXAFdkwIWUiZB5fv2vvyWjGPcAwDIuhcoGZLtA43y9o7PY-k_T-qamm9gPNoc2mGTrHZamdnSFFv03Orr2u9oc6LoNWO_aD9ov5-YUozc1fQuNxRgx3pGbyhwiji51SDbPs_fpIlm-zl-mk2ViuWJtUqZoyxxkkapCOpVxEKoElxeVAumkq0omCutSnlpbWjSp5cKayqlcZo47JYbk8Xz3GJqvE8ZW75tT6AJGzTPJOGdcpp0KziobmhgDVvoYum_Dj2age4K6I6h7gvpCsLM8nC0eEf_kKoOiyDPxC6FjbFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571221274</pqid></control><display><type>article</type><title>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Lisus, Daniil ; Cossette, Charles Champagne ; Shalaby, Mohammed ; Forbes, James Richard</creator><creatorcontrib>Lisus, Daniil ; Cossette, Charles Champagne ; Shalaby, Mohammed ; Forbes, James Richard</creatorcontrib><description>It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3102300</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dipole antennas ; Estimation ; Extended Kalman filter ; Gaussian process ; Gaussian process regression ; Gaussian processes ; Gyroscopes ; Indoor environments ; Localization ; machine learning ; Magnetometers ; Orientation ; Predictive models ; Robots ; sensor fusion ; Signal processing ; Signal strength ; Training ; Transceivers ; Ultrawideband</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8387-8393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</citedby><cites>FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</cites><orcidid>0000-0002-1987-9268 ; 0000-0002-6145-6509 ; 0000-0002-9380-8361 ; 0000-0003-0520-4603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9508865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lisus, Daniil</creatorcontrib><creatorcontrib>Cossette, Charles Champagne</creatorcontrib><creatorcontrib>Shalaby, Mohammed</creatorcontrib><creatorcontrib>Forbes, James Richard</creatorcontrib><title>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements.</description><subject>Dipole antennas</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Gaussian process</subject><subject>Gaussian process regression</subject><subject>Gaussian processes</subject><subject>Gyroscopes</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>machine learning</subject><subject>Magnetometers</subject><subject>Orientation</subject><subject>Predictive models</subject><subject>Robots</subject><subject>sensor fusion</subject><subject>Signal processing</subject><subject>Signal strength</subject><subject>Training</subject><subject>Transceivers</subject><subject>Ultrawideband</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOObeBV8CPndekrZpHseYmzBQNsceQ5pcZ8ZsZ9IJ_ve2bIhPd9x93_Hdj5B7BmPGQD0tV5MxB87GggEXAFdkwIWUiZB5fv2vvyWjGPcAwDIuhcoGZLtA43y9o7PY-k_T-qamm9gPNoc2mGTrHZamdnSFFv03Orr2u9oc6LoNWO_aD9ov5-YUozc1fQuNxRgx3pGbyhwiji51SDbPs_fpIlm-zl-mk2ViuWJtUqZoyxxkkapCOpVxEKoElxeVAumkq0omCutSnlpbWjSp5cKayqlcZo47JYbk8Xz3GJqvE8ZW75tT6AJGzTPJOGdcpp0KziobmhgDVvoYum_Dj2age4K6I6h7gvpCsLM8nC0eEf_kKoOiyDPxC6FjbFQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lisus, Daniil</creator><creator>Cossette, Charles Champagne</creator><creator>Shalaby, Mohammed</creator><creator>Forbes, James Richard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1987-9268</orcidid><orcidid>https://orcid.org/0000-0002-6145-6509</orcidid><orcidid>https://orcid.org/0000-0002-9380-8361</orcidid><orcidid>https://orcid.org/0000-0003-0520-4603</orcidid></search><sort><creationdate>20211001</creationdate><title>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</title><author>Lisus, Daniil ; Cossette, Charles Champagne ; Shalaby, Mohammed ; Forbes, James Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dipole antennas</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Gaussian process</topic><topic>Gaussian process regression</topic><topic>Gaussian processes</topic><topic>Gyroscopes</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>machine learning</topic><topic>Magnetometers</topic><topic>Orientation</topic><topic>Predictive models</topic><topic>Robots</topic><topic>sensor fusion</topic><topic>Signal processing</topic><topic>Signal strength</topic><topic>Training</topic><topic>Transceivers</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisus, Daniil</creatorcontrib><creatorcontrib>Cossette, Charles Champagne</creatorcontrib><creatorcontrib>Shalaby, Mohammed</creatorcontrib><creatorcontrib>Forbes, James Richard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lisus, Daniil</au><au>Cossette, Charles Champagne</au><au>Shalaby, Mohammed</au><au>Forbes, James Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>8387</spage><epage>8393</epage><pages>8387-8393</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3102300</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1987-9268</orcidid><orcidid>https://orcid.org/0000-0002-6145-6509</orcidid><orcidid>https://orcid.org/0000-0002-9380-8361</orcidid><orcidid>https://orcid.org/0000-0003-0520-4603</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8387-8393
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9508865
source IEEE Electronic Library (IEL)
subjects Dipole antennas
Estimation
Extended Kalman filter
Gaussian process
Gaussian process regression
Gaussian processes
Gyroscopes
Indoor environments
Localization
machine learning
Magnetometers
Orientation
Predictive models
Robots
sensor fusion
Signal processing
Signal strength
Training
Transceivers
Ultrawideband
title Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heading%20Estimation%20Using%20Ultra-Wideband%20Received%20Signal%20Strength%20and%20Gaussian%20Processes&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Lisus,%20Daniil&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=8387&rft.epage=8393&rft.pages=8387-8393&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3102300&rft_dat=%3Cproquest_RIE%3E2571221274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571221274&rft_id=info:pmid/&rft_ieee_id=9508865&rfr_iscdi=true