Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes
It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-10, Vol.6 (4), p.8387-8393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8393 |
---|---|
container_issue | 4 |
container_start_page | 8387 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Lisus, Daniil Cossette, Charles Champagne Shalaby, Mohammed Forbes, James Richard |
description | It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements. |
doi_str_mv | 10.1109/LRA.2021.3102300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9508865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508865</ieee_id><sourcerecordid>2571221274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOObeBV8CPndekrZpHseYmzBQNsceQ5pcZ8ZsZ9IJ_ve2bIhPd9x93_Hdj5B7BmPGQD0tV5MxB87GggEXAFdkwIWUiZB5fv2vvyWjGPcAwDIuhcoGZLtA43y9o7PY-k_T-qamm9gPNoc2mGTrHZamdnSFFv03Orr2u9oc6LoNWO_aD9ov5-YUozc1fQuNxRgx3pGbyhwiji51SDbPs_fpIlm-zl-mk2ViuWJtUqZoyxxkkapCOpVxEKoElxeVAumkq0omCutSnlpbWjSp5cKayqlcZo47JYbk8Xz3GJqvE8ZW75tT6AJGzTPJOGdcpp0KziobmhgDVvoYum_Dj2age4K6I6h7gvpCsLM8nC0eEf_kKoOiyDPxC6FjbFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571221274</pqid></control><display><type>article</type><title>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Lisus, Daniil ; Cossette, Charles Champagne ; Shalaby, Mohammed ; Forbes, James Richard</creator><creatorcontrib>Lisus, Daniil ; Cossette, Charles Champagne ; Shalaby, Mohammed ; Forbes, James Richard</creatorcontrib><description>It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3102300</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dipole antennas ; Estimation ; Extended Kalman filter ; Gaussian process ; Gaussian process regression ; Gaussian processes ; Gyroscopes ; Indoor environments ; Localization ; machine learning ; Magnetometers ; Orientation ; Predictive models ; Robots ; sensor fusion ; Signal processing ; Signal strength ; Training ; Transceivers ; Ultrawideband</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8387-8393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</citedby><cites>FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</cites><orcidid>0000-0002-1987-9268 ; 0000-0002-6145-6509 ; 0000-0002-9380-8361 ; 0000-0003-0520-4603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9508865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lisus, Daniil</creatorcontrib><creatorcontrib>Cossette, Charles Champagne</creatorcontrib><creatorcontrib>Shalaby, Mohammed</creatorcontrib><creatorcontrib>Forbes, James Richard</creatorcontrib><title>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements.</description><subject>Dipole antennas</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Gaussian process</subject><subject>Gaussian process regression</subject><subject>Gaussian processes</subject><subject>Gyroscopes</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>machine learning</subject><subject>Magnetometers</subject><subject>Orientation</subject><subject>Predictive models</subject><subject>Robots</subject><subject>sensor fusion</subject><subject>Signal processing</subject><subject>Signal strength</subject><subject>Training</subject><subject>Transceivers</subject><subject>Ultrawideband</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOObeBV8CPndekrZpHseYmzBQNsceQ5pcZ8ZsZ9IJ_ve2bIhPd9x93_Hdj5B7BmPGQD0tV5MxB87GggEXAFdkwIWUiZB5fv2vvyWjGPcAwDIuhcoGZLtA43y9o7PY-k_T-qamm9gPNoc2mGTrHZamdnSFFv03Orr2u9oc6LoNWO_aD9ov5-YUozc1fQuNxRgx3pGbyhwiji51SDbPs_fpIlm-zl-mk2ViuWJtUqZoyxxkkapCOpVxEKoElxeVAumkq0omCutSnlpbWjSp5cKayqlcZo47JYbk8Xz3GJqvE8ZW75tT6AJGzTPJOGdcpp0KziobmhgDVvoYum_Dj2age4K6I6h7gvpCsLM8nC0eEf_kKoOiyDPxC6FjbFQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lisus, Daniil</creator><creator>Cossette, Charles Champagne</creator><creator>Shalaby, Mohammed</creator><creator>Forbes, James Richard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1987-9268</orcidid><orcidid>https://orcid.org/0000-0002-6145-6509</orcidid><orcidid>https://orcid.org/0000-0002-9380-8361</orcidid><orcidid>https://orcid.org/0000-0003-0520-4603</orcidid></search><sort><creationdate>20211001</creationdate><title>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</title><author>Lisus, Daniil ; Cossette, Charles Champagne ; Shalaby, Mohammed ; Forbes, James Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4ecb60784987d952039b0d68f907d7dfb138cd424ccbcea4c23cafd9675d2d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dipole antennas</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Gaussian process</topic><topic>Gaussian process regression</topic><topic>Gaussian processes</topic><topic>Gyroscopes</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>machine learning</topic><topic>Magnetometers</topic><topic>Orientation</topic><topic>Predictive models</topic><topic>Robots</topic><topic>sensor fusion</topic><topic>Signal processing</topic><topic>Signal strength</topic><topic>Training</topic><topic>Transceivers</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisus, Daniil</creatorcontrib><creatorcontrib>Cossette, Charles Champagne</creatorcontrib><creatorcontrib>Shalaby, Mohammed</creatorcontrib><creatorcontrib>Forbes, James Richard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lisus, Daniil</au><au>Cossette, Charles Champagne</au><au>Shalaby, Mohammed</au><au>Forbes, James Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>8387</spage><epage>8393</epage><pages>8387-8393</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>It is essential that a robot has the ability to determine its position and orientation to execute tasks autonomously. Heading estimation is especially challenging in indoor environments where magnetic distortions make magnetometer-based heading estimation difficult. Ultra-wideband (UWB) transceivers are common in indoor localization problems. This letter experimentally demonstrates how to use UWB range and received signal strength (RSS) measurements to estimate robot heading. The RSS of a UWB antenna varies with its orientation. As such, a Gaussian process (GP) is used to learn a data-driven relationship from UWB range and RSS inputs to orientation outputs. Combined with a gyroscope in an invariant extended Kalman filter, this realizes a heading estimation method that uses only UWB and gyroscope measurements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3102300</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1987-9268</orcidid><orcidid>https://orcid.org/0000-0002-6145-6509</orcidid><orcidid>https://orcid.org/0000-0002-9380-8361</orcidid><orcidid>https://orcid.org/0000-0003-0520-4603</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8387-8393 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9508865 |
source | IEEE Electronic Library (IEL) |
subjects | Dipole antennas Estimation Extended Kalman filter Gaussian process Gaussian process regression Gaussian processes Gyroscopes Indoor environments Localization machine learning Magnetometers Orientation Predictive models Robots sensor fusion Signal processing Signal strength Training Transceivers Ultrawideband |
title | Heading Estimation Using Ultra-Wideband Received Signal Strength and Gaussian Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heading%20Estimation%20Using%20Ultra-Wideband%20Received%20Signal%20Strength%20and%20Gaussian%20Processes&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Lisus,%20Daniil&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=8387&rft.epage=8393&rft.pages=8387-8393&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3102300&rft_dat=%3Cproquest_RIE%3E2571221274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571221274&rft_id=info:pmid/&rft_ieee_id=9508865&rfr_iscdi=true |