An Efficient Incremental Learning of Bearing Fault Imbalanced Data Set via Filter StyleGAN

At present, the bearing fault is one of the major mechanical faults, deep learning-based bearing fault diagnosis methods have been successfully developed. However, the fault data of bearings in the industrial environment are very few, which leads to the failure or performance degradation of conventi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-10
Hauptverfasser: Wang, Yinjun, Zeng, Liling, Wang, Liming, Shao, Yimin, Zhang, Yongxiang, Ding, Xiaoxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Wang, Yinjun
Zeng, Liling
Wang, Liming
Shao, Yimin
Zhang, Yongxiang
Ding, Xiaoxi
description At present, the bearing fault is one of the major mechanical faults, deep learning-based bearing fault diagnosis methods have been successfully developed. However, the fault data of bearings in the industrial environment are very few, which leads to the failure or performance degradation of conventional intelligent diagnosis methods. It costs a large amount of manpower and material to obtain complete samples of the industrial environment, which is unrealistic. Therefore, it is necessary to use a small number of actual fault signals for incremental learning. The existing incremental learning models cannot solve the entanglement problem of sample features, and the ability to obtain new samples by combining features is limited. In this article, the filter style-based generative adversarial network (FSGAN) is used to separate hidden features by mapping data features to intermediate latent space, and then, new signals are generated by feature reorganization. The different signals are generated by controlling the weight coefficient of style after network training, and then, valuable signals are selected by the t-distributed stochastic neighbor embedding (t-SNE) clustering analysis. The model can generate fault signals with unknown sizes under unknown conditions. Finally, the advantages of FSGAN are further verified by the quality evaluation of the generated signals and comparison with other models.
doi_str_mv 10.1109/TIM.2021.3073436
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9508205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508205</ieee_id><sourcerecordid>2560139093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e5fbb1d3a52b4572d0639fb77825e848e767f22e0b5300df354845e7c2d316343</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7FYYk4527Edj6W0pVKBoWVhsZzkjFKlSXFSpP57XLVium94353uEXLPYMQYmKf14m3EgbORAC1SoS7IgEmpE6MUvyQDAJYlJpXqmtx03QYAtEr1gHyNGzr1vioqbHq6aIqA25hcTZfoQlM137T19DnmY5y5fR2pbe5q1xRY0hfXO7rCnv5Wjs6qusdAV_2hxvn4_ZZceVd3eHeeQ_I5m64nr8nyY76YjJdJwQ3rE5Q-z1kpnOR5KjUvQQnjc60zLjFLM9RKe84RcikASi9kmqUSdcFLwVR8dUgeT3t3of3ZY9fbTbsPTTxpuVTAhAEjIgUnqght1wX0dheqrQsHy8AeDdpo0B4N2rPBWHk4VSpE_MeNhIyDFH9aqWpD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560139093</pqid></control><display><type>article</type><title>An Efficient Incremental Learning of Bearing Fault Imbalanced Data Set via Filter StyleGAN</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yinjun ; Zeng, Liling ; Wang, Liming ; Shao, Yimin ; Zhang, Yongxiang ; Ding, Xiaoxi</creator><creatorcontrib>Wang, Yinjun ; Zeng, Liling ; Wang, Liming ; Shao, Yimin ; Zhang, Yongxiang ; Ding, Xiaoxi</creatorcontrib><description>At present, the bearing fault is one of the major mechanical faults, deep learning-based bearing fault diagnosis methods have been successfully developed. However, the fault data of bearings in the industrial environment are very few, which leads to the failure or performance degradation of conventional intelligent diagnosis methods. It costs a large amount of manpower and material to obtain complete samples of the industrial environment, which is unrealistic. Therefore, it is necessary to use a small number of actual fault signals for incremental learning. The existing incremental learning models cannot solve the entanglement problem of sample features, and the ability to obtain new samples by combining features is limited. In this article, the filter style-based generative adversarial network (FSGAN) is used to separate hidden features by mapping data features to intermediate latent space, and then, new signals are generated by feature reorganization. The different signals are generated by controlling the weight coefficient of style after network training, and then, valuable signals are selected by the t-distributed stochastic neighbor embedding (t-SNE) clustering analysis. The model can generate fault signals with unknown sizes under unknown conditions. Finally, the advantages of FSGAN are further verified by the quality evaluation of the generated signals and comparison with other models.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3073436</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Cluster analysis ; Clustering ; Data imbalance ; Deep learning ; Degradation ; Entanglement ; fault classification ; Fault diagnosis ; Generative adversarial networks ; incremental learning ; Learning systems ; Manpower ; Performance degradation ; Quality assessment ; Stochastic processes ; StyleGAN ; Training ; transfer learning</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e5fbb1d3a52b4572d0639fb77825e848e767f22e0b5300df354845e7c2d316343</citedby><cites>FETCH-LOGICAL-c291t-e5fbb1d3a52b4572d0639fb77825e848e767f22e0b5300df354845e7c2d316343</cites><orcidid>0000-0002-5288-6515 ; 0000-0002-2698-7005 ; 0000-0002-6108-5453 ; 0000-0001-6749-9203 ; 0000-0002-5777-3640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9508205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yinjun</creatorcontrib><creatorcontrib>Zeng, Liling</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Shao, Yimin</creatorcontrib><creatorcontrib>Zhang, Yongxiang</creatorcontrib><creatorcontrib>Ding, Xiaoxi</creatorcontrib><title>An Efficient Incremental Learning of Bearing Fault Imbalanced Data Set via Filter StyleGAN</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>At present, the bearing fault is one of the major mechanical faults, deep learning-based bearing fault diagnosis methods have been successfully developed. However, the fault data of bearings in the industrial environment are very few, which leads to the failure or performance degradation of conventional intelligent diagnosis methods. It costs a large amount of manpower and material to obtain complete samples of the industrial environment, which is unrealistic. Therefore, it is necessary to use a small number of actual fault signals for incremental learning. The existing incremental learning models cannot solve the entanglement problem of sample features, and the ability to obtain new samples by combining features is limited. In this article, the filter style-based generative adversarial network (FSGAN) is used to separate hidden features by mapping data features to intermediate latent space, and then, new signals are generated by feature reorganization. The different signals are generated by controlling the weight coefficient of style after network training, and then, valuable signals are selected by the t-distributed stochastic neighbor embedding (t-SNE) clustering analysis. The model can generate fault signals with unknown sizes under unknown conditions. Finally, the advantages of FSGAN are further verified by the quality evaluation of the generated signals and comparison with other models.</description><subject>Aerospace electronics</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data imbalance</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Entanglement</subject><subject>fault classification</subject><subject>Fault diagnosis</subject><subject>Generative adversarial networks</subject><subject>incremental learning</subject><subject>Learning systems</subject><subject>Manpower</subject><subject>Performance degradation</subject><subject>Quality assessment</subject><subject>Stochastic processes</subject><subject>StyleGAN</subject><subject>Training</subject><subject>transfer learning</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQRi0EEqWwI7FYYk4527Edj6W0pVKBoWVhsZzkjFKlSXFSpP57XLVium94353uEXLPYMQYmKf14m3EgbORAC1SoS7IgEmpE6MUvyQDAJYlJpXqmtx03QYAtEr1gHyNGzr1vioqbHq6aIqA25hcTZfoQlM137T19DnmY5y5fR2pbe5q1xRY0hfXO7rCnv5Wjs6qusdAV_2hxvn4_ZZceVd3eHeeQ_I5m64nr8nyY76YjJdJwQ3rE5Q-z1kpnOR5KjUvQQnjc60zLjFLM9RKe84RcikASi9kmqUSdcFLwVR8dUgeT3t3of3ZY9fbTbsPTTxpuVTAhAEjIgUnqght1wX0dheqrQsHy8AeDdpo0B4N2rPBWHk4VSpE_MeNhIyDFH9aqWpD</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Yinjun</creator><creator>Zeng, Liling</creator><creator>Wang, Liming</creator><creator>Shao, Yimin</creator><creator>Zhang, Yongxiang</creator><creator>Ding, Xiaoxi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5288-6515</orcidid><orcidid>https://orcid.org/0000-0002-2698-7005</orcidid><orcidid>https://orcid.org/0000-0002-6108-5453</orcidid><orcidid>https://orcid.org/0000-0001-6749-9203</orcidid><orcidid>https://orcid.org/0000-0002-5777-3640</orcidid></search><sort><creationdate>2021</creationdate><title>An Efficient Incremental Learning of Bearing Fault Imbalanced Data Set via Filter StyleGAN</title><author>Wang, Yinjun ; Zeng, Liling ; Wang, Liming ; Shao, Yimin ; Zhang, Yongxiang ; Ding, Xiaoxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e5fbb1d3a52b4572d0639fb77825e848e767f22e0b5300df354845e7c2d316343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace electronics</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data imbalance</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Entanglement</topic><topic>fault classification</topic><topic>Fault diagnosis</topic><topic>Generative adversarial networks</topic><topic>incremental learning</topic><topic>Learning systems</topic><topic>Manpower</topic><topic>Performance degradation</topic><topic>Quality assessment</topic><topic>Stochastic processes</topic><topic>StyleGAN</topic><topic>Training</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yinjun</creatorcontrib><creatorcontrib>Zeng, Liling</creatorcontrib><creatorcontrib>Wang, Liming</creatorcontrib><creatorcontrib>Shao, Yimin</creatorcontrib><creatorcontrib>Zhang, Yongxiang</creatorcontrib><creatorcontrib>Ding, Xiaoxi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yinjun</au><au>Zeng, Liling</au><au>Wang, Liming</au><au>Shao, Yimin</au><au>Zhang, Yongxiang</au><au>Ding, Xiaoxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Incremental Learning of Bearing Fault Imbalanced Data Set via Filter StyleGAN</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>At present, the bearing fault is one of the major mechanical faults, deep learning-based bearing fault diagnosis methods have been successfully developed. However, the fault data of bearings in the industrial environment are very few, which leads to the failure or performance degradation of conventional intelligent diagnosis methods. It costs a large amount of manpower and material to obtain complete samples of the industrial environment, which is unrealistic. Therefore, it is necessary to use a small number of actual fault signals for incremental learning. The existing incremental learning models cannot solve the entanglement problem of sample features, and the ability to obtain new samples by combining features is limited. In this article, the filter style-based generative adversarial network (FSGAN) is used to separate hidden features by mapping data features to intermediate latent space, and then, new signals are generated by feature reorganization. The different signals are generated by controlling the weight coefficient of style after network training, and then, valuable signals are selected by the t-distributed stochastic neighbor embedding (t-SNE) clustering analysis. The model can generate fault signals with unknown sizes under unknown conditions. Finally, the advantages of FSGAN are further verified by the quality evaluation of the generated signals and comparison with other models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3073436</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5288-6515</orcidid><orcidid>https://orcid.org/0000-0002-2698-7005</orcidid><orcidid>https://orcid.org/0000-0002-6108-5453</orcidid><orcidid>https://orcid.org/0000-0001-6749-9203</orcidid><orcidid>https://orcid.org/0000-0002-5777-3640</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9508205
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Cluster analysis
Clustering
Data imbalance
Deep learning
Degradation
Entanglement
fault classification
Fault diagnosis
Generative adversarial networks
incremental learning
Learning systems
Manpower
Performance degradation
Quality assessment
Stochastic processes
StyleGAN
Training
transfer learning
title An Efficient Incremental Learning of Bearing Fault Imbalanced Data Set via Filter StyleGAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Incremental%20Learning%20of%20Bearing%20Fault%20Imbalanced%20Data%20Set%20via%20Filter%20StyleGAN&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wang,%20Yinjun&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3073436&rft_dat=%3Cproquest_RIE%3E2560139093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560139093&rft_id=info:pmid/&rft_ieee_id=9508205&rfr_iscdi=true