On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review

Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.110592-110600
Hauptverfasser: Osman, Rida Al, Osman, Hussein Al
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110600
container_issue
container_start_page 110592
container_title IEEE access
container_volume 9
creator Osman, Rida Al
Osman, Hussein Al
description Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.
doi_str_mv 10.1109/ACCESS.2021.3102096
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9504576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9504576</ieee_id><doaj_id>oai_doaj_org_article_ed0f6101bc3346b391482cab32c8ef9b</doaj_id><sourcerecordid>2560914135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</originalsourceid><addsrcrecordid>eNpNUU1rGzEQFSWFBje_wBdBz3ZG0kq7ys1Z0jbgYrDrYxFa7ciWcVautE7xv--6G0LnMh-892aYR8iUwZwx0PeLun7abOYcOJsLBhy0-kBuOVN6JqRQN__Vn8hdzgcYohpGsrwlv1Yd7fdItxlp9PSHdfvQIV2iTV3odtTHROujzTn4y7VfnNvQx3Shj8mGLvf4QteYT7HLmB_ogm5cPF1xa3wN-Ocz-ejtMePdW56Q7denn_X32XL17bleLGeugKqfKWCVLEEXTkqpC1COcVCFaIcrWynLllWK8cYiYFGCcOBL3QrPBVdWe12JCXkeddtoD-aUwotNFxNtMP8GMe2MTX1wRzTYglcMWOOEKFQjNCsq7mwjuKvQ62bQ-jJqnVL8fcbcm0M8p24433CpYMCz4ZUTIkaUSzHnhP59KwNztcWMtpirLebNloE1HVkBEd8ZWkIhSyX-An08hiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560914135</pqid></control><display><type>article</type><title>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Osman, Rida Al ; Osman, Hussein Al</creator><creatorcontrib>Osman, Rida Al ; Osman, Hussein Al</creatorcontrib><description>Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3102096</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Auditory brainstem response ; Auditory system ; Brainstem ; Classification ; decoding ; feature extraction ; Hearing aids ; Hidden Markov models ; Machine learning ; Markers ; Search engines ; Support vector machines ; Transient analysis ; Tuning ; Waveforms</subject><ispartof>IEEE access, 2021, Vol.9, p.110592-110600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</citedby><cites>FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</cites><orcidid>0000-0002-7189-5644 ; 0000-0002-8407-2487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9504576$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Osman, Rida Al</creatorcontrib><creatorcontrib>Osman, Hussein Al</creatorcontrib><title>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.</description><subject>Auditory brainstem response</subject><subject>Auditory system</subject><subject>Brainstem</subject><subject>Classification</subject><subject>decoding</subject><subject>feature extraction</subject><subject>Hearing aids</subject><subject>Hidden Markov models</subject><subject>Machine learning</subject><subject>Markers</subject><subject>Search engines</subject><subject>Support vector machines</subject><subject>Transient analysis</subject><subject>Tuning</subject><subject>Waveforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQFSWFBje_wBdBz3ZG0kq7ys1Z0jbgYrDrYxFa7ciWcVautE7xv--6G0LnMh-892aYR8iUwZwx0PeLun7abOYcOJsLBhy0-kBuOVN6JqRQN__Vn8hdzgcYohpGsrwlv1Yd7fdItxlp9PSHdfvQIV2iTV3odtTHROujzTn4y7VfnNvQx3Shj8mGLvf4QteYT7HLmB_ogm5cPF1xa3wN-Ocz-ejtMePdW56Q7denn_X32XL17bleLGeugKqfKWCVLEEXTkqpC1COcVCFaIcrWynLllWK8cYiYFGCcOBL3QrPBVdWe12JCXkeddtoD-aUwotNFxNtMP8GMe2MTX1wRzTYglcMWOOEKFQjNCsq7mwjuKvQ62bQ-jJqnVL8fcbcm0M8p24433CpYMCz4ZUTIkaUSzHnhP59KwNztcWMtpirLebNloE1HVkBEd8ZWkIhSyX-An08hiw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Osman, Rida Al</creator><creator>Osman, Hussein Al</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7189-5644</orcidid><orcidid>https://orcid.org/0000-0002-8407-2487</orcidid></search><sort><creationdate>2021</creationdate><title>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</title><author>Osman, Rida Al ; Osman, Hussein Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auditory brainstem response</topic><topic>Auditory system</topic><topic>Brainstem</topic><topic>Classification</topic><topic>decoding</topic><topic>feature extraction</topic><topic>Hearing aids</topic><topic>Hidden Markov models</topic><topic>Machine learning</topic><topic>Markers</topic><topic>Search engines</topic><topic>Support vector machines</topic><topic>Transient analysis</topic><topic>Tuning</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osman, Rida Al</creatorcontrib><creatorcontrib>Osman, Hussein Al</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osman, Rida Al</au><au>Osman, Hussein Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>110592</spage><epage>110600</epage><pages>110592-110600</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3102096</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7189-5644</orcidid><orcidid>https://orcid.org/0000-0002-8407-2487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.110592-110600
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9504576
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Auditory brainstem response
Auditory system
Brainstem
Classification
decoding
feature extraction
Hearing aids
Hidden Markov models
Machine learning
Markers
Search engines
Support vector machines
Transient analysis
Tuning
Waveforms
title On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Machine%20Learning%20for%20Classifying%20Auditory%20Brainstem%20Responses:%20A%20Scoping%20Review&rft.jtitle=IEEE%20access&rft.au=Osman,%20Rida%20Al&rft.date=2021&rft.volume=9&rft.spage=110592&rft.epage=110600&rft.pages=110592-110600&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3102096&rft_dat=%3Cproquest_ieee_%3E2560914135%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560914135&rft_id=info:pmid/&rft_ieee_id=9504576&rft_doaj_id=oai_doaj_org_article_ed0f6101bc3346b391482cab32c8ef9b&rfr_iscdi=true