On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review
Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.110592-110600 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110600 |
---|---|
container_issue | |
container_start_page | 110592 |
container_title | IEEE access |
container_volume | 9 |
creator | Osman, Rida Al Osman, Hussein Al |
description | Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects. |
doi_str_mv | 10.1109/ACCESS.2021.3102096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9504576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9504576</ieee_id><doaj_id>oai_doaj_org_article_ed0f6101bc3346b391482cab32c8ef9b</doaj_id><sourcerecordid>2560914135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</originalsourceid><addsrcrecordid>eNpNUU1rGzEQFSWFBje_wBdBz3ZG0kq7ys1Z0jbgYrDrYxFa7ciWcVautE7xv--6G0LnMh-892aYR8iUwZwx0PeLun7abOYcOJsLBhy0-kBuOVN6JqRQN__Vn8hdzgcYohpGsrwlv1Yd7fdItxlp9PSHdfvQIV2iTV3odtTHROujzTn4y7VfnNvQx3Shj8mGLvf4QteYT7HLmB_ogm5cPF1xa3wN-Ocz-ejtMePdW56Q7denn_X32XL17bleLGeugKqfKWCVLEEXTkqpC1COcVCFaIcrWynLllWK8cYiYFGCcOBL3QrPBVdWe12JCXkeddtoD-aUwotNFxNtMP8GMe2MTX1wRzTYglcMWOOEKFQjNCsq7mwjuKvQ62bQ-jJqnVL8fcbcm0M8p24433CpYMCz4ZUTIkaUSzHnhP59KwNztcWMtpirLebNloE1HVkBEd8ZWkIhSyX-An08hiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560914135</pqid></control><display><type>article</type><title>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Osman, Rida Al ; Osman, Hussein Al</creator><creatorcontrib>Osman, Rida Al ; Osman, Hussein Al</creatorcontrib><description>Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3102096</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Auditory brainstem response ; Auditory system ; Brainstem ; Classification ; decoding ; feature extraction ; Hearing aids ; Hidden Markov models ; Machine learning ; Markers ; Search engines ; Support vector machines ; Transient analysis ; Tuning ; Waveforms</subject><ispartof>IEEE access, 2021, Vol.9, p.110592-110600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</citedby><cites>FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</cites><orcidid>0000-0002-7189-5644 ; 0000-0002-8407-2487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9504576$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Osman, Rida Al</creatorcontrib><creatorcontrib>Osman, Hussein Al</creatorcontrib><title>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.</description><subject>Auditory brainstem response</subject><subject>Auditory system</subject><subject>Brainstem</subject><subject>Classification</subject><subject>decoding</subject><subject>feature extraction</subject><subject>Hearing aids</subject><subject>Hidden Markov models</subject><subject>Machine learning</subject><subject>Markers</subject><subject>Search engines</subject><subject>Support vector machines</subject><subject>Transient analysis</subject><subject>Tuning</subject><subject>Waveforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQFSWFBje_wBdBz3ZG0kq7ys1Z0jbgYrDrYxFa7ciWcVautE7xv--6G0LnMh-892aYR8iUwZwx0PeLun7abOYcOJsLBhy0-kBuOVN6JqRQN__Vn8hdzgcYohpGsrwlv1Yd7fdItxlp9PSHdfvQIV2iTV3odtTHROujzTn4y7VfnNvQx3Shj8mGLvf4QteYT7HLmB_ogm5cPF1xa3wN-Ocz-ejtMePdW56Q7denn_X32XL17bleLGeugKqfKWCVLEEXTkqpC1COcVCFaIcrWynLllWK8cYiYFGCcOBL3QrPBVdWe12JCXkeddtoD-aUwotNFxNtMP8GMe2MTX1wRzTYglcMWOOEKFQjNCsq7mwjuKvQ62bQ-jJqnVL8fcbcm0M8p24433CpYMCz4ZUTIkaUSzHnhP59KwNztcWMtpirLebNloE1HVkBEd8ZWkIhSyX-An08hiw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Osman, Rida Al</creator><creator>Osman, Hussein Al</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7189-5644</orcidid><orcidid>https://orcid.org/0000-0002-8407-2487</orcidid></search><sort><creationdate>2021</creationdate><title>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</title><author>Osman, Rida Al ; Osman, Hussein Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-601857094c5559406c120643d816d557d18612bae0e4703c0f79d3f2326a9f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auditory brainstem response</topic><topic>Auditory system</topic><topic>Brainstem</topic><topic>Classification</topic><topic>decoding</topic><topic>feature extraction</topic><topic>Hearing aids</topic><topic>Hidden Markov models</topic><topic>Machine learning</topic><topic>Markers</topic><topic>Search engines</topic><topic>Support vector machines</topic><topic>Transient analysis</topic><topic>Tuning</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osman, Rida Al</creatorcontrib><creatorcontrib>Osman, Hussein Al</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osman, Rida Al</au><au>Osman, Hussein Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>110592</spage><epage>110600</epage><pages>110592-110600</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recent advances in machine learning have led to a surge of interest in classification of the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar, SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of machine learning to classify the auditory brainstem response as a complementary and objective method to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli, and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented and their limitations as well as their potential applications will be discussed. Overall, the findings of these studies suggest that ABR classification using machine learning is a promising tool for assessing patients with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3102096</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7189-5644</orcidid><orcidid>https://orcid.org/0000-0002-8407-2487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.110592-110600 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9504576 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Auditory brainstem response Auditory system Brainstem Classification decoding feature extraction Hearing aids Hidden Markov models Machine learning Markers Search engines Support vector machines Transient analysis Tuning Waveforms |
title | On the Use of Machine Learning for Classifying Auditory Brainstem Responses: A Scoping Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Machine%20Learning%20for%20Classifying%20Auditory%20Brainstem%20Responses:%20A%20Scoping%20Review&rft.jtitle=IEEE%20access&rft.au=Osman,%20Rida%20Al&rft.date=2021&rft.volume=9&rft.spage=110592&rft.epage=110600&rft.pages=110592-110600&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3102096&rft_dat=%3Cproquest_ieee_%3E2560914135%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560914135&rft_id=info:pmid/&rft_ieee_id=9504576&rft_doaj_id=oai_doaj_org_article_ed0f6101bc3346b391482cab32c8ef9b&rfr_iscdi=true |