Edge Device Identification Based on Federated Learning and Network Traffic Feature Engineering

With the ubiquitous deployment and applications of Internet of Things (IoT), security issues pose a critical challenge to IoT devices. External attackers often utilize vulnerable IoT devices to invade the target's internal network and then further cause a security threat to the whole network. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive communications and networking 2022-12, Vol.8 (4), p.1898-1909
Hauptverfasser: He, Zhimin, Yin, Jie, Wang, Yu, Gui, Guan, Adebisi, Bamidele, Ohtsuki, Tomoaki, Gacanin, Haris, Sari, Hikmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1909
container_issue 4
container_start_page 1898
container_title IEEE transactions on cognitive communications and networking
container_volume 8
creator He, Zhimin
Yin, Jie
Wang, Yu
Gui, Guan
Adebisi, Bamidele
Ohtsuki, Tomoaki
Gacanin, Haris
Sari, Hikmet
description With the ubiquitous deployment and applications of Internet of Things (IoT), security issues pose a critical challenge to IoT devices. External attackers often utilize vulnerable IoT devices to invade the target's internal network and then further cause a security threat to the whole network. To prevent such attacks, it is necessary to develop a security mechanism to control the access of suspicious IoT devices and manage the internal devices. In recent years, deep learning (DL) algorithm has been widely used in the field of edge device identification (EDI), and has made great achievements. However, these previous methods are essentially centralized learning-based EDI (CentEDI) that trains all data together, which can not guarantee data security and not conducive to deployment on edge devices. To address this problem, we introduce a federated learning-based EDI (FedeEDI) method via network traffic to automatically identify edge devices connected to the whole network. Experimental results show that the training efficiency of our proposed FedeEDI method is much higher than that of the CentEDI method, although its classification accuracy is slightly reduced. In contrast to the CentEDI method, the proposed FedeEDI method has two main advantages: faster training speed and safer training process.
doi_str_mv 10.1109/TCCN.2021.3101239
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9502154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9502154</ieee_id><sourcerecordid>2748563726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b278cf34cc38c61de62d84d481141f030c9ea6e2dff0b02f145d4864f824635b3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWLQPIF4CnlszSTa7e9S11UKpl3o1pMmkpGq2ZreKb29Ki3iaGeb7Z-Aj5ArYGIDVt8umWYw54zAWwICL-oQMuBB8VJYCTv_152TYdRvGGCiuVCUH5HXi1kgf8CtYpDOHsQ8-WNOHNtJ706GjuZmiw2T6PMzRpBjimpro6AL77za90WUyPocyZvpdQjqJ6xARU-YuyZk37x0Oj_WCvEwny-ZpNH9-nDV385EVRd2PVrysrBfSWlFZBQ4Vd5V0sgKQ4JlgtkajkDvv2YpxD7LISyV9xaUSxUpckJvD3W1qP3fY9XrT7lLMLzUvZVUoUXKVKThQNrVdl9DrbQofJv1oYHpvUu9N6r1JfTSZM9eHTEDEP74uMlNI8QsGsm4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748563726</pqid></control><display><type>article</type><title>Edge Device Identification Based on Federated Learning and Network Traffic Feature Engineering</title><source>IEEE Electronic Library (IEL)</source><creator>He, Zhimin ; Yin, Jie ; Wang, Yu ; Gui, Guan ; Adebisi, Bamidele ; Ohtsuki, Tomoaki ; Gacanin, Haris ; Sari, Hikmet</creator><creatorcontrib>He, Zhimin ; Yin, Jie ; Wang, Yu ; Gui, Guan ; Adebisi, Bamidele ; Ohtsuki, Tomoaki ; Gacanin, Haris ; Sari, Hikmet</creatorcontrib><description>With the ubiquitous deployment and applications of Internet of Things (IoT), security issues pose a critical challenge to IoT devices. External attackers often utilize vulnerable IoT devices to invade the target's internal network and then further cause a security threat to the whole network. To prevent such attacks, it is necessary to develop a security mechanism to control the access of suspicious IoT devices and manage the internal devices. In recent years, deep learning (DL) algorithm has been widely used in the field of edge device identification (EDI), and has made great achievements. However, these previous methods are essentially centralized learning-based EDI (CentEDI) that trains all data together, which can not guarantee data security and not conducive to deployment on edge devices. To address this problem, we introduce a federated learning-based EDI (FedeEDI) method via network traffic to automatically identify edge devices connected to the whole network. Experimental results show that the training efficiency of our proposed FedeEDI method is much higher than that of the CentEDI method, although its classification accuracy is slightly reduced. In contrast to the CentEDI method, the proposed FedeEDI method has two main advantages: faster training speed and safer training process.</description><identifier>ISSN: 2332-7731</identifier><identifier>EISSN: 2332-7731</identifier><identifier>DOI: 10.1109/TCCN.2021.3101239</identifier><identifier>CODEN: ITCCG7</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Access control ; Algorithms ; centralized learning ; Communications traffic ; Deep learning ; edge device identification ; Feature extraction ; Federated learning ; Internet of Things ; Machine learning ; Machine learning algorithms ; network traffic ; Object recognition ; Security ; Traffic engineering ; Training</subject><ispartof>IEEE transactions on cognitive communications and networking, 2022-12, Vol.8 (4), p.1898-1909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b278cf34cc38c61de62d84d481141f030c9ea6e2dff0b02f145d4864f824635b3</citedby><cites>FETCH-LOGICAL-c359t-b278cf34cc38c61de62d84d481141f030c9ea6e2dff0b02f145d4864f824635b3</cites><orcidid>0000-0003-3961-1426 ; 0000-0001-9418-5939 ; 0000-0003-3888-2881 ; 0000-0003-3168-8883 ; 0000-0001-9071-9120 ; 0000-0001-7763-4261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9502154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9502154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Zhimin</creatorcontrib><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><creatorcontrib>Adebisi, Bamidele</creatorcontrib><creatorcontrib>Ohtsuki, Tomoaki</creatorcontrib><creatorcontrib>Gacanin, Haris</creatorcontrib><creatorcontrib>Sari, Hikmet</creatorcontrib><title>Edge Device Identification Based on Federated Learning and Network Traffic Feature Engineering</title><title>IEEE transactions on cognitive communications and networking</title><addtitle>TCCN</addtitle><description>With the ubiquitous deployment and applications of Internet of Things (IoT), security issues pose a critical challenge to IoT devices. External attackers often utilize vulnerable IoT devices to invade the target's internal network and then further cause a security threat to the whole network. To prevent such attacks, it is necessary to develop a security mechanism to control the access of suspicious IoT devices and manage the internal devices. In recent years, deep learning (DL) algorithm has been widely used in the field of edge device identification (EDI), and has made great achievements. However, these previous methods are essentially centralized learning-based EDI (CentEDI) that trains all data together, which can not guarantee data security and not conducive to deployment on edge devices. To address this problem, we introduce a federated learning-based EDI (FedeEDI) method via network traffic to automatically identify edge devices connected to the whole network. Experimental results show that the training efficiency of our proposed FedeEDI method is much higher than that of the CentEDI method, although its classification accuracy is slightly reduced. In contrast to the CentEDI method, the proposed FedeEDI method has two main advantages: faster training speed and safer training process.</description><subject>Access control</subject><subject>Algorithms</subject><subject>centralized learning</subject><subject>Communications traffic</subject><subject>Deep learning</subject><subject>edge device identification</subject><subject>Feature extraction</subject><subject>Federated learning</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>network traffic</subject><subject>Object recognition</subject><subject>Security</subject><subject>Traffic engineering</subject><subject>Training</subject><issn>2332-7731</issn><issn>2332-7731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWLQPIF4CnlszSTa7e9S11UKpl3o1pMmkpGq2ZreKb29Ki3iaGeb7Z-Aj5ArYGIDVt8umWYw54zAWwICL-oQMuBB8VJYCTv_152TYdRvGGCiuVCUH5HXi1kgf8CtYpDOHsQ8-WNOHNtJ706GjuZmiw2T6PMzRpBjimpro6AL77za90WUyPocyZvpdQjqJ6xARU-YuyZk37x0Oj_WCvEwny-ZpNH9-nDV385EVRd2PVrysrBfSWlFZBQ4Vd5V0sgKQ4JlgtkajkDvv2YpxD7LISyV9xaUSxUpckJvD3W1qP3fY9XrT7lLMLzUvZVUoUXKVKThQNrVdl9DrbQofJv1oYHpvUu9N6r1JfTSZM9eHTEDEP74uMlNI8QsGsm4s</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>He, Zhimin</creator><creator>Yin, Jie</creator><creator>Wang, Yu</creator><creator>Gui, Guan</creator><creator>Adebisi, Bamidele</creator><creator>Ohtsuki, Tomoaki</creator><creator>Gacanin, Haris</creator><creator>Sari, Hikmet</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3961-1426</orcidid><orcidid>https://orcid.org/0000-0001-9418-5939</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0003-3168-8883</orcidid><orcidid>https://orcid.org/0000-0001-9071-9120</orcidid><orcidid>https://orcid.org/0000-0001-7763-4261</orcidid></search><sort><creationdate>20221201</creationdate><title>Edge Device Identification Based on Federated Learning and Network Traffic Feature Engineering</title><author>He, Zhimin ; Yin, Jie ; Wang, Yu ; Gui, Guan ; Adebisi, Bamidele ; Ohtsuki, Tomoaki ; Gacanin, Haris ; Sari, Hikmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b278cf34cc38c61de62d84d481141f030c9ea6e2dff0b02f145d4864f824635b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>centralized learning</topic><topic>Communications traffic</topic><topic>Deep learning</topic><topic>edge device identification</topic><topic>Feature extraction</topic><topic>Federated learning</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>network traffic</topic><topic>Object recognition</topic><topic>Security</topic><topic>Traffic engineering</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Zhimin</creatorcontrib><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><creatorcontrib>Adebisi, Bamidele</creatorcontrib><creatorcontrib>Ohtsuki, Tomoaki</creatorcontrib><creatorcontrib>Gacanin, Haris</creatorcontrib><creatorcontrib>Sari, Hikmet</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on cognitive communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Zhimin</au><au>Yin, Jie</au><au>Wang, Yu</au><au>Gui, Guan</au><au>Adebisi, Bamidele</au><au>Ohtsuki, Tomoaki</au><au>Gacanin, Haris</au><au>Sari, Hikmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Device Identification Based on Federated Learning and Network Traffic Feature Engineering</atitle><jtitle>IEEE transactions on cognitive communications and networking</jtitle><stitle>TCCN</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><spage>1898</spage><epage>1909</epage><pages>1898-1909</pages><issn>2332-7731</issn><eissn>2332-7731</eissn><coden>ITCCG7</coden><abstract>With the ubiquitous deployment and applications of Internet of Things (IoT), security issues pose a critical challenge to IoT devices. External attackers often utilize vulnerable IoT devices to invade the target's internal network and then further cause a security threat to the whole network. To prevent such attacks, it is necessary to develop a security mechanism to control the access of suspicious IoT devices and manage the internal devices. In recent years, deep learning (DL) algorithm has been widely used in the field of edge device identification (EDI), and has made great achievements. However, these previous methods are essentially centralized learning-based EDI (CentEDI) that trains all data together, which can not guarantee data security and not conducive to deployment on edge devices. To address this problem, we introduce a federated learning-based EDI (FedeEDI) method via network traffic to automatically identify edge devices connected to the whole network. Experimental results show that the training efficiency of our proposed FedeEDI method is much higher than that of the CentEDI method, although its classification accuracy is slightly reduced. In contrast to the CentEDI method, the proposed FedeEDI method has two main advantages: faster training speed and safer training process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCCN.2021.3101239</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3961-1426</orcidid><orcidid>https://orcid.org/0000-0001-9418-5939</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0003-3168-8883</orcidid><orcidid>https://orcid.org/0000-0001-9071-9120</orcidid><orcidid>https://orcid.org/0000-0001-7763-4261</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7731
ispartof IEEE transactions on cognitive communications and networking, 2022-12, Vol.8 (4), p.1898-1909
issn 2332-7731
2332-7731
language eng
recordid cdi_ieee_primary_9502154
source IEEE Electronic Library (IEL)
subjects Access control
Algorithms
centralized learning
Communications traffic
Deep learning
edge device identification
Feature extraction
Federated learning
Internet of Things
Machine learning
Machine learning algorithms
network traffic
Object recognition
Security
Traffic engineering
Training
title Edge Device Identification Based on Federated Learning and Network Traffic Feature Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Device%20Identification%20Based%20on%20Federated%20Learning%20and%20Network%20Traffic%20Feature%20Engineering&rft.jtitle=IEEE%20transactions%20on%20cognitive%20communications%20and%20networking&rft.au=He,%20Zhimin&rft.date=2022-12-01&rft.volume=8&rft.issue=4&rft.spage=1898&rft.epage=1909&rft.pages=1898-1909&rft.issn=2332-7731&rft.eissn=2332-7731&rft.coden=ITCCG7&rft_id=info:doi/10.1109/TCCN.2021.3101239&rft_dat=%3Cproquest_RIE%3E2748563726%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748563726&rft_id=info:pmid/&rft_ieee_id=9502154&rfr_iscdi=true