The Frequency Discrepancy Between Real and Generated Images

Despite the success of Generative Adversarial Networks (GANs), little work has focused on the discrepancy between real and generated images in frequency domain. In this work, we provide a systematic analysis on this topic. We first demonstrate the general existence of the frequency discrepancy and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.115205-115216
Hauptverfasser: Wang, Yuehui, Cai, Liyan, Zhang, Dongyu, Huang, Sibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115216
container_issue
container_start_page 115205
container_title IEEE access
container_volume 9
creator Wang, Yuehui
Cai, Liyan
Zhang, Dongyu
Huang, Sibo
description Despite the success of Generative Adversarial Networks (GANs), little work has focused on the discrepancy between real and generated images in frequency domain. In this work, we provide a systematic analysis on this topic. We first demonstrate the general existence of the frequency discrepancy and further perform extensive experiments both on datasets with various frequency distributions and models with different upsampling methods to reveal the sources of the discrepancy. Experimental results show that: resize-convolution is not a perfect alternative to deconvolution, and natural images and unnatural images should be treated separately during training. Based on these studies, we provide some novel solutions to reduce the discrepancy. Finally, we further show the effectiveness of our solutions on Variational Auto Encoders (VAEs). We hope that the community should pay equal attention to the performance of generative models both in spatial and frequency domain.
doi_str_mv 10.1109/ACCESS.2021.3100891
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9500220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9500220</ieee_id><doaj_id>oai_doaj_org_article_df4f442c76aa49d9a4a29c051fa7fdd2</doaj_id><sourcerecordid>2564227484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-be9eb20aeadfa3cbe283d4b98190c996e0a41844e20acfa71b92bef64416a9da3</originalsourceid><addsrcrecordid>eNpNUE1rwkAQXUoLFesv8BLoWbtf-Vh6sqlaQShUe14mu7M2oondRIr_vmsj0rnM8HjvzcwjZMjomDGqniZ5Pl2txpxyNhaM0kyxG9LjLFEjEYvk9t98TwZNs6WhsgDFaY88r78wmnn8PmJlTtFr2RiPBzjPL9j-IFbRB8IugspGc6zQQ4s2Wuxhg80DuXOwa3Bw6X3yOZuu87fR8n2-yCfLkZE0a0cFKiw4BQTrQJgCeSasLFTGFDVKJUhBskxKDBzjIGWF4gW6REqWgLIg-mTR-doatvrgyz34k66h1H9A7TcafFuaHWrrpJOSmzQBkMoqkMCVoTELvs5aHrweO6-Dr8PPTau39dFX4XzN40RynspMBpboWMbXTePRXbcyqs-h6y50fQ5dX0IPqmGnKhHxqlAxpZxT8QtyZ3z4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564227484</pqid></control><display><type>article</type><title>The Frequency Discrepancy Between Real and Generated Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Yuehui ; Cai, Liyan ; Zhang, Dongyu ; Huang, Sibo</creator><creatorcontrib>Wang, Yuehui ; Cai, Liyan ; Zhang, Dongyu ; Huang, Sibo</creatorcontrib><description>Despite the success of Generative Adversarial Networks (GANs), little work has focused on the discrepancy between real and generated images in frequency domain. In this work, we provide a systematic analysis on this topic. We first demonstrate the general existence of the frequency discrepancy and further perform extensive experiments both on datasets with various frequency distributions and models with different upsampling methods to reveal the sources of the discrepancy. Experimental results show that: resize-convolution is not a perfect alternative to deconvolution, and natural images and unnatural images should be treated separately during training. Based on these studies, we provide some novel solutions to reduce the discrepancy. Finally, we further show the effectiveness of our solutions on Variational Auto Encoders (VAEs). We hope that the community should pay equal attention to the performance of generative models both in spatial and frequency domain.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3100891</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coders ; computer vision ; Deep learning ; frequency discrepancy ; Frequency domain analysis ; generative adversarial network ; Generative adversarial networks ; High frequency ; image generation ; Training ; Visualization</subject><ispartof>IEEE access, 2021, Vol.9, p.115205-115216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-be9eb20aeadfa3cbe283d4b98190c996e0a41844e20acfa71b92bef64416a9da3</citedby><cites>FETCH-LOGICAL-c408t-be9eb20aeadfa3cbe283d4b98190c996e0a41844e20acfa71b92bef64416a9da3</cites><orcidid>0000-0002-4253-0304 ; 0000-0001-9379-0360 ; 0000-0002-5132-3868 ; 0000-0002-7595-0137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9500220$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wang, Yuehui</creatorcontrib><creatorcontrib>Cai, Liyan</creatorcontrib><creatorcontrib>Zhang, Dongyu</creatorcontrib><creatorcontrib>Huang, Sibo</creatorcontrib><title>The Frequency Discrepancy Between Real and Generated Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Despite the success of Generative Adversarial Networks (GANs), little work has focused on the discrepancy between real and generated images in frequency domain. In this work, we provide a systematic analysis on this topic. We first demonstrate the general existence of the frequency discrepancy and further perform extensive experiments both on datasets with various frequency distributions and models with different upsampling methods to reveal the sources of the discrepancy. Experimental results show that: resize-convolution is not a perfect alternative to deconvolution, and natural images and unnatural images should be treated separately during training. Based on these studies, we provide some novel solutions to reduce the discrepancy. Finally, we further show the effectiveness of our solutions on Variational Auto Encoders (VAEs). We hope that the community should pay equal attention to the performance of generative models both in spatial and frequency domain.</description><subject>Coders</subject><subject>computer vision</subject><subject>Deep learning</subject><subject>frequency discrepancy</subject><subject>Frequency domain analysis</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>High frequency</subject><subject>image generation</subject><subject>Training</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQXUoLFesv8BLoWbtf-Vh6sqlaQShUe14mu7M2oondRIr_vmsj0rnM8HjvzcwjZMjomDGqniZ5Pl2txpxyNhaM0kyxG9LjLFEjEYvk9t98TwZNs6WhsgDFaY88r78wmnn8PmJlTtFr2RiPBzjPL9j-IFbRB8IugspGc6zQQ4s2Wuxhg80DuXOwa3Bw6X3yOZuu87fR8n2-yCfLkZE0a0cFKiw4BQTrQJgCeSasLFTGFDVKJUhBskxKDBzjIGWF4gW6REqWgLIg-mTR-doatvrgyz34k66h1H9A7TcafFuaHWrrpJOSmzQBkMoqkMCVoTELvs5aHrweO6-Dr8PPTau39dFX4XzN40RynspMBpboWMbXTePRXbcyqs-h6y50fQ5dX0IPqmGnKhHxqlAxpZxT8QtyZ3z4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Yuehui</creator><creator>Cai, Liyan</creator><creator>Zhang, Dongyu</creator><creator>Huang, Sibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4253-0304</orcidid><orcidid>https://orcid.org/0000-0001-9379-0360</orcidid><orcidid>https://orcid.org/0000-0002-5132-3868</orcidid><orcidid>https://orcid.org/0000-0002-7595-0137</orcidid></search><sort><creationdate>2021</creationdate><title>The Frequency Discrepancy Between Real and Generated Images</title><author>Wang, Yuehui ; Cai, Liyan ; Zhang, Dongyu ; Huang, Sibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-be9eb20aeadfa3cbe283d4b98190c996e0a41844e20acfa71b92bef64416a9da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coders</topic><topic>computer vision</topic><topic>Deep learning</topic><topic>frequency discrepancy</topic><topic>Frequency domain analysis</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>High frequency</topic><topic>image generation</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuehui</creatorcontrib><creatorcontrib>Cai, Liyan</creatorcontrib><creatorcontrib>Zhang, Dongyu</creatorcontrib><creatorcontrib>Huang, Sibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuehui</au><au>Cai, Liyan</au><au>Zhang, Dongyu</au><au>Huang, Sibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Frequency Discrepancy Between Real and Generated Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>115205</spage><epage>115216</epage><pages>115205-115216</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Despite the success of Generative Adversarial Networks (GANs), little work has focused on the discrepancy between real and generated images in frequency domain. In this work, we provide a systematic analysis on this topic. We first demonstrate the general existence of the frequency discrepancy and further perform extensive experiments both on datasets with various frequency distributions and models with different upsampling methods to reveal the sources of the discrepancy. Experimental results show that: resize-convolution is not a perfect alternative to deconvolution, and natural images and unnatural images should be treated separately during training. Based on these studies, we provide some novel solutions to reduce the discrepancy. Finally, we further show the effectiveness of our solutions on Variational Auto Encoders (VAEs). We hope that the community should pay equal attention to the performance of generative models both in spatial and frequency domain.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3100891</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4253-0304</orcidid><orcidid>https://orcid.org/0000-0001-9379-0360</orcidid><orcidid>https://orcid.org/0000-0002-5132-3868</orcidid><orcidid>https://orcid.org/0000-0002-7595-0137</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.115205-115216
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9500220
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Coders
computer vision
Deep learning
frequency discrepancy
Frequency domain analysis
generative adversarial network
Generative adversarial networks
High frequency
image generation
Training
Visualization
title The Frequency Discrepancy Between Real and Generated Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Frequency%20Discrepancy%20Between%20Real%20and%20Generated%20Images&rft.jtitle=IEEE%20access&rft.au=Wang,%20Yuehui&rft.date=2021&rft.volume=9&rft.spage=115205&rft.epage=115216&rft.pages=115205-115216&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3100891&rft_dat=%3Cproquest_ieee_%3E2564227484%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564227484&rft_id=info:pmid/&rft_ieee_id=9500220&rft_doaj_id=oai_doaj_org_article_df4f442c76aa49d9a4a29c051fa7fdd2&rfr_iscdi=true