Solving Chance-Constrained Optimization Under Nonparametric Uncertainty Through Hilbert Space Embedding

In this article, we present an efficient algorithm for solving a class of chance-constrained optimization under nonparametric uncertainty. Our algorithm is built on the possibility of representing arbitrary distributions as functions in Reproducing Kernel Hilbert Space (RKHS). We use this foundation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2022-05, Vol.30 (3), p.901-916
Hauptverfasser: Gopalakrishnan, Bharath, Singh, Arun Kumar, Krishna, K. Madhava, Manocha, Dinesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!