Graph Neural Networks Using Local Descriptions in Attributed Graphs: An Application to Symbol Recognition and Hand Written Character Recognition
Graph-based methods have been widely used by the document image analysis and recognition community, as the different objects and the content in document images is best represented by this powerful structural representation. Designing of novel computation tools for processing these graph-based struct...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.99103-99111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99111 |
---|---|
container_issue | |
container_start_page | 99103 |
container_title | IEEE access |
container_volume | 9 |
creator | Kajla, Nadeem Iqbal Missen, Malik Muhammad Saad Luqman, Muhammad Muzzamil Coustaty, Mickael |
description | Graph-based methods have been widely used by the document image analysis and recognition community, as the different objects and the content in document images is best represented by this powerful structural representation. Designing of novel computation tools for processing these graph-based structural representations has always remained a hot topic of research. Recently, Graph Neural Network (GNN) have been used for solving different problems in the domain of document image analysis and recognition. In this article we take forward the state of the art by presenting a new approach to gather the symbolic and numeric information from the nodes and edges of a graph. We use this information to learn a Graph Neural Network (GNN). The experimentation on the recognition of handwritten letters and graphical symbols shows that the proposed approach is an interesting contribution to the growing set of GNN-based methods for document image analysis and recognition. |
doi_str_mv | 10.1109/ACCESS.2021.3096845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9481900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481900</ieee_id><doaj_id>oai_doaj_org_article_b8c71d3d08394a088b45cf1d00909767</doaj_id><sourcerecordid>2553594793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e6fb8a147f96e750baaa3eb9d93c539c9b36008fa758c3919a7fccb4a492e20e3</originalsourceid><addsrcrecordid>eNpNkdFqHCEYhYfQQEKaJ8iNkOvd6qij5m6ZpklgaSHb0Ev5dZyN28k4VZeSt-gj190JIV74y8c5R-VU1RXBS0Kw-rJq29vNZlnjmiwpVo1k_KQ6r0mjFpTT5tOH81l1mdIOlyUL4uK8-ncXYXpG390-wlBG_hvi74Sekh-3aB1sgV9dstFP2YcxIT-iVc7Rm312HTqa0w1aFTpNg7dwUKEc0Ob1xYQBPTobtqM_Uhg7dH_YfkWfsxtR-wwRbHbxo-xzddrDkNzl27yonr7d_mzvF-sfdw_tar2wDMu8cE1vJBAmetU4wbEBAOqM6hS1nCqrDG3KL3sQXFqqiALRW2sYMFW7Gjt6UT3MuV2AnZ6if4H4qgN4fQQhbjXE7O3gtJFWkI52WFLFAEtpGLc96TBWWIlGlKzrOWuK4c_epax3YR_H8nxdc065YkLRoqKzysaQUnT9-60E60OTem5SH5rUb00W19Xs8s65d4dikiiM6X8f7ptx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553594793</pqid></control><display><type>article</type><title>Graph Neural Networks Using Local Descriptions in Attributed Graphs: An Application to Symbol Recognition and Hand Written Character Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kajla, Nadeem Iqbal ; Missen, Malik Muhammad Saad ; Luqman, Muhammad Muzzamil ; Coustaty, Mickael</creator><creatorcontrib>Kajla, Nadeem Iqbal ; Missen, Malik Muhammad Saad ; Luqman, Muhammad Muzzamil ; Coustaty, Mickael</creatorcontrib><description>Graph-based methods have been widely used by the document image analysis and recognition community, as the different objects and the content in document images is best represented by this powerful structural representation. Designing of novel computation tools for processing these graph-based structural representations has always remained a hot topic of research. Recently, Graph Neural Network (GNN) have been used for solving different problems in the domain of document image analysis and recognition. In this article we take forward the state of the art by presenting a new approach to gather the symbolic and numeric information from the nodes and edges of a graph. We use this information to learn a Graph Neural Network (GNN). The experimentation on the recognition of handwritten letters and graphical symbols shows that the proposed approach is an interesting contribution to the growing set of GNN-based methods for document image analysis and recognition.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3096845</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attributed graphs ; Character recognition ; Computer architecture ; document image analysis (DIA) ; Experimentation ; graph classification ; graph learning ; graph matching ; Graph neural networks ; Graph Neural Networks (GNN) ; graph similarity ; Graph theory ; Graphical representations ; Handwriting recognition ; Image analysis ; local descriptions ; Mathematical model ; Measurement ; Message passing ; Neural networks ; Numerical models ; Object recognition ; pattern recognition (PR) ; Text analysis</subject><ispartof>IEEE access, 2021, Vol.9, p.99103-99111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e6fb8a147f96e750baaa3eb9d93c539c9b36008fa758c3919a7fccb4a492e20e3</citedby><cites>FETCH-LOGICAL-c408t-e6fb8a147f96e750baaa3eb9d93c539c9b36008fa758c3919a7fccb4a492e20e3</cites><orcidid>0000-0001-9903-0274 ; 0000-0002-0123-439X ; 0000-0001-8722-7790 ; 0000-0002-9658-0833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481900$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kajla, Nadeem Iqbal</creatorcontrib><creatorcontrib>Missen, Malik Muhammad Saad</creatorcontrib><creatorcontrib>Luqman, Muhammad Muzzamil</creatorcontrib><creatorcontrib>Coustaty, Mickael</creatorcontrib><title>Graph Neural Networks Using Local Descriptions in Attributed Graphs: An Application to Symbol Recognition and Hand Written Character Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Graph-based methods have been widely used by the document image analysis and recognition community, as the different objects and the content in document images is best represented by this powerful structural representation. Designing of novel computation tools for processing these graph-based structural representations has always remained a hot topic of research. Recently, Graph Neural Network (GNN) have been used for solving different problems in the domain of document image analysis and recognition. In this article we take forward the state of the art by presenting a new approach to gather the symbolic and numeric information from the nodes and edges of a graph. We use this information to learn a Graph Neural Network (GNN). The experimentation on the recognition of handwritten letters and graphical symbols shows that the proposed approach is an interesting contribution to the growing set of GNN-based methods for document image analysis and recognition.</description><subject>attributed graphs</subject><subject>Character recognition</subject><subject>Computer architecture</subject><subject>document image analysis (DIA)</subject><subject>Experimentation</subject><subject>graph classification</subject><subject>graph learning</subject><subject>graph matching</subject><subject>Graph neural networks</subject><subject>Graph Neural Networks (GNN)</subject><subject>graph similarity</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Handwriting recognition</subject><subject>Image analysis</subject><subject>local descriptions</subject><subject>Mathematical model</subject><subject>Measurement</subject><subject>Message passing</subject><subject>Neural networks</subject><subject>Numerical models</subject><subject>Object recognition</subject><subject>pattern recognition (PR)</subject><subject>Text analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdFqHCEYhYfQQEKaJ8iNkOvd6qij5m6ZpklgaSHb0Ev5dZyN28k4VZeSt-gj190JIV74y8c5R-VU1RXBS0Kw-rJq29vNZlnjmiwpVo1k_KQ6r0mjFpTT5tOH81l1mdIOlyUL4uK8-ncXYXpG390-wlBG_hvi74Sekh-3aB1sgV9dstFP2YcxIT-iVc7Rm312HTqa0w1aFTpNg7dwUKEc0Ob1xYQBPTobtqM_Uhg7dH_YfkWfsxtR-wwRbHbxo-xzddrDkNzl27yonr7d_mzvF-sfdw_tar2wDMu8cE1vJBAmetU4wbEBAOqM6hS1nCqrDG3KL3sQXFqqiALRW2sYMFW7Gjt6UT3MuV2AnZ6if4H4qgN4fQQhbjXE7O3gtJFWkI52WFLFAEtpGLc96TBWWIlGlKzrOWuK4c_epax3YR_H8nxdc065YkLRoqKzysaQUnT9-60E60OTem5SH5rUb00W19Xs8s65d4dikiiM6X8f7ptx</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kajla, Nadeem Iqbal</creator><creator>Missen, Malik Muhammad Saad</creator><creator>Luqman, Muhammad Muzzamil</creator><creator>Coustaty, Mickael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9903-0274</orcidid><orcidid>https://orcid.org/0000-0002-0123-439X</orcidid><orcidid>https://orcid.org/0000-0001-8722-7790</orcidid><orcidid>https://orcid.org/0000-0002-9658-0833</orcidid></search><sort><creationdate>2021</creationdate><title>Graph Neural Networks Using Local Descriptions in Attributed Graphs: An Application to Symbol Recognition and Hand Written Character Recognition</title><author>Kajla, Nadeem Iqbal ; Missen, Malik Muhammad Saad ; Luqman, Muhammad Muzzamil ; Coustaty, Mickael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e6fb8a147f96e750baaa3eb9d93c539c9b36008fa758c3919a7fccb4a492e20e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>attributed graphs</topic><topic>Character recognition</topic><topic>Computer architecture</topic><topic>document image analysis (DIA)</topic><topic>Experimentation</topic><topic>graph classification</topic><topic>graph learning</topic><topic>graph matching</topic><topic>Graph neural networks</topic><topic>Graph Neural Networks (GNN)</topic><topic>graph similarity</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Handwriting recognition</topic><topic>Image analysis</topic><topic>local descriptions</topic><topic>Mathematical model</topic><topic>Measurement</topic><topic>Message passing</topic><topic>Neural networks</topic><topic>Numerical models</topic><topic>Object recognition</topic><topic>pattern recognition (PR)</topic><topic>Text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kajla, Nadeem Iqbal</creatorcontrib><creatorcontrib>Missen, Malik Muhammad Saad</creatorcontrib><creatorcontrib>Luqman, Muhammad Muzzamil</creatorcontrib><creatorcontrib>Coustaty, Mickael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajla, Nadeem Iqbal</au><au>Missen, Malik Muhammad Saad</au><au>Luqman, Muhammad Muzzamil</au><au>Coustaty, Mickael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Neural Networks Using Local Descriptions in Attributed Graphs: An Application to Symbol Recognition and Hand Written Character Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>99103</spage><epage>99111</epage><pages>99103-99111</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Graph-based methods have been widely used by the document image analysis and recognition community, as the different objects and the content in document images is best represented by this powerful structural representation. Designing of novel computation tools for processing these graph-based structural representations has always remained a hot topic of research. Recently, Graph Neural Network (GNN) have been used for solving different problems in the domain of document image analysis and recognition. In this article we take forward the state of the art by presenting a new approach to gather the symbolic and numeric information from the nodes and edges of a graph. We use this information to learn a Graph Neural Network (GNN). The experimentation on the recognition of handwritten letters and graphical symbols shows that the proposed approach is an interesting contribution to the growing set of GNN-based methods for document image analysis and recognition.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3096845</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9903-0274</orcidid><orcidid>https://orcid.org/0000-0002-0123-439X</orcidid><orcidid>https://orcid.org/0000-0001-8722-7790</orcidid><orcidid>https://orcid.org/0000-0002-9658-0833</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.99103-99111 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9481900 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | attributed graphs Character recognition Computer architecture document image analysis (DIA) Experimentation graph classification graph learning graph matching Graph neural networks Graph Neural Networks (GNN) graph similarity Graph theory Graphical representations Handwriting recognition Image analysis local descriptions Mathematical model Measurement Message passing Neural networks Numerical models Object recognition pattern recognition (PR) Text analysis |
title | Graph Neural Networks Using Local Descriptions in Attributed Graphs: An Application to Symbol Recognition and Hand Written Character Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Neural%20Networks%20Using%20Local%20Descriptions%20in%20Attributed%20Graphs:%20An%20Application%20to%20Symbol%20Recognition%20and%20Hand%20Written%20Character%20Recognition&rft.jtitle=IEEE%20access&rft.au=Kajla,%20Nadeem%20Iqbal&rft.date=2021&rft.volume=9&rft.spage=99103&rft.epage=99111&rft.pages=99103-99111&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3096845&rft_dat=%3Cproquest_ieee_%3E2553594793%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553594793&rft_id=info:pmid/&rft_ieee_id=9481900&rft_doaj_id=oai_doaj_org_article_b8c71d3d08394a088b45cf1d00909767&rfr_iscdi=true |