Multiscale Adversarial and Weighted Gradient Domain Adaptive Network for Data Scarcity Surface Defect Detection

Surface defect detection is a challenging task in industrial manufacture. Recent methods using supervised learning need a large-scale dataset to achieve precise detection. However, the time-consuming and the difficulty of data acquisition make it difficult to build a large-scale dataset. This articl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-10
Hauptverfasser: Song, Yiguo, Liu, Zhenyu, Wang, Jiahui, Tang, Ruining, Duan, Guifang, Tan, Jianrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Song, Yiguo
Liu, Zhenyu
Wang, Jiahui
Tang, Ruining
Duan, Guifang
Tan, Jianrong
description Surface defect detection is a challenging task in industrial manufacture. Recent methods using supervised learning need a large-scale dataset to achieve precise detection. However, the time-consuming and the difficulty of data acquisition make it difficult to build a large-scale dataset. This article proposes a domain adaptive network, called multiscale adversarial and weighted gradient domain adaptive network (MWDAN) for data scarcity surface defect detection. By MWDAN, the detection model trained from a small-scale dataset can gain the knowledge of transfer from another large-scale dataset, that is to say, even for a training dataset that is difficult to collect huge amounts of data, a good defect detection model can also be constructed, aided by another dataset that is relatively easy to acquire. The MWDAN is constructed in two levels. In the image level, a multiscale domain feature adaptation approach is proposed to solve the domain shift between the source domain and the target domain. In the instance level, a piecewise weighted gradient reversal layer (PWGRL) is designed to balance the weight of the backpropagation gradient for the hard- and easy-confused samples in domain classification and force confusion. Then, the PWGRL can reduce the local instance difference to further promote domain consistency. The experiments on mental surface defect detection show encourage results by the proposed MWDAN method.
doi_str_mv 10.1109/TIM.2021.3096284
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9481147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481147</ieee_id><sourcerecordid>2555725685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6db50b8c2963d4d9c5a52381e31d8edb0982e17310bdacb264d737983a06f5bc3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TDLJsrRaC60uWnE5ZJI3mtrO1Exa6b83peLq8uDc--AgdEvJgFKiH5bT-YARRgecaMlUfoZ6VIgi01Kyc9QjhKpM50JeoquuWxFCCpkXPdTOd-voO2vWgIduD6EzwZs1No3D7-A_PiM4PAnGeWgiHrcb45sEmm30e8AvEH_a8IXrNuCxiQYvrAnWxwNe7EJtLOAx1GBTEWIK3zbX6KI26w5u_rKP3p4el6PnbPY6mY6Gs8wyTWMmXSVIpdIhucudtsIIxhUFTp0CVxGtGNCCU1I5Yysmc1fwQituiKxFZXkf3Z92t6H93kEXy1W7C016WTKRvDAhlUgUOVE2tF0XoC63wW9MOJSUlEetZdJaHrWWf1pT5e5U8QDwj-tcUZoX_BfRSHQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555725685</pqid></control><display><type>article</type><title>Multiscale Adversarial and Weighted Gradient Domain Adaptive Network for Data Scarcity Surface Defect Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Yiguo ; Liu, Zhenyu ; Wang, Jiahui ; Tang, Ruining ; Duan, Guifang ; Tan, Jianrong</creator><creatorcontrib>Song, Yiguo ; Liu, Zhenyu ; Wang, Jiahui ; Tang, Ruining ; Duan, Guifang ; Tan, Jianrong</creatorcontrib><description>Surface defect detection is a challenging task in industrial manufacture. Recent methods using supervised learning need a large-scale dataset to achieve precise detection. However, the time-consuming and the difficulty of data acquisition make it difficult to build a large-scale dataset. This article proposes a domain adaptive network, called multiscale adversarial and weighted gradient domain adaptive network (MWDAN) for data scarcity surface defect detection. By MWDAN, the detection model trained from a small-scale dataset can gain the knowledge of transfer from another large-scale dataset, that is to say, even for a training dataset that is difficult to collect huge amounts of data, a good defect detection model can also be constructed, aided by another dataset that is relatively easy to acquire. The MWDAN is constructed in two levels. In the image level, a multiscale domain feature adaptation approach is proposed to solve the domain shift between the source domain and the target domain. In the instance level, a piecewise weighted gradient reversal layer (PWGRL) is designed to balance the weight of the backpropagation gradient for the hard- and easy-confused samples in domain classification and force confusion. Then, the PWGRL can reduce the local instance difference to further promote domain consistency. The experiments on mental surface defect detection show encourage results by the proposed MWDAN method.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3096284</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive systems ; Adversarial training ; Annotations ; Back propagation ; Datasets ; Detectors ; domain adaptation ; Domains ; Feature extraction ; Image acquisition ; Knowledge management ; machine vision ; Production methods ; surface defect detection ; Surface defects ; Task analysis ; Training</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6db50b8c2963d4d9c5a52381e31d8edb0982e17310bdacb264d737983a06f5bc3</citedby><cites>FETCH-LOGICAL-c291t-6db50b8c2963d4d9c5a52381e31d8edb0982e17310bdacb264d737983a06f5bc3</cites><orcidid>0000-0002-0922-7557 ; 0000-0002-7425-341X ; 0000-0003-3471-2666 ; 0000-0001-7974-7059 ; 0000-0003-2463-4553 ; 0000-0002-5057-7428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481147$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9481147$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Yiguo</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Wang, Jiahui</creatorcontrib><creatorcontrib>Tang, Ruining</creatorcontrib><creatorcontrib>Duan, Guifang</creatorcontrib><creatorcontrib>Tan, Jianrong</creatorcontrib><title>Multiscale Adversarial and Weighted Gradient Domain Adaptive Network for Data Scarcity Surface Defect Detection</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Surface defect detection is a challenging task in industrial manufacture. Recent methods using supervised learning need a large-scale dataset to achieve precise detection. However, the time-consuming and the difficulty of data acquisition make it difficult to build a large-scale dataset. This article proposes a domain adaptive network, called multiscale adversarial and weighted gradient domain adaptive network (MWDAN) for data scarcity surface defect detection. By MWDAN, the detection model trained from a small-scale dataset can gain the knowledge of transfer from another large-scale dataset, that is to say, even for a training dataset that is difficult to collect huge amounts of data, a good defect detection model can also be constructed, aided by another dataset that is relatively easy to acquire. The MWDAN is constructed in two levels. In the image level, a multiscale domain feature adaptation approach is proposed to solve the domain shift between the source domain and the target domain. In the instance level, a piecewise weighted gradient reversal layer (PWGRL) is designed to balance the weight of the backpropagation gradient for the hard- and easy-confused samples in domain classification and force confusion. Then, the PWGRL can reduce the local instance difference to further promote domain consistency. The experiments on mental surface defect detection show encourage results by the proposed MWDAN method.</description><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Adversarial training</subject><subject>Annotations</subject><subject>Back propagation</subject><subject>Datasets</subject><subject>Detectors</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Knowledge management</subject><subject>machine vision</subject><subject>Production methods</subject><subject>surface defect detection</subject><subject>Surface defects</subject><subject>Task analysis</subject><subject>Training</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TDLJsrRaC60uWnE5ZJI3mtrO1Exa6b83peLq8uDc--AgdEvJgFKiH5bT-YARRgecaMlUfoZ6VIgi01Kyc9QjhKpM50JeoquuWxFCCpkXPdTOd-voO2vWgIduD6EzwZs1No3D7-A_PiM4PAnGeWgiHrcb45sEmm30e8AvEH_a8IXrNuCxiQYvrAnWxwNe7EJtLOAx1GBTEWIK3zbX6KI26w5u_rKP3p4el6PnbPY6mY6Gs8wyTWMmXSVIpdIhucudtsIIxhUFTp0CVxGtGNCCU1I5Yysmc1fwQituiKxFZXkf3Z92t6H93kEXy1W7C016WTKRvDAhlUgUOVE2tF0XoC63wW9MOJSUlEetZdJaHrWWf1pT5e5U8QDwj-tcUZoX_BfRSHQI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Song, Yiguo</creator><creator>Liu, Zhenyu</creator><creator>Wang, Jiahui</creator><creator>Tang, Ruining</creator><creator>Duan, Guifang</creator><creator>Tan, Jianrong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0922-7557</orcidid><orcidid>https://orcid.org/0000-0002-7425-341X</orcidid><orcidid>https://orcid.org/0000-0003-3471-2666</orcidid><orcidid>https://orcid.org/0000-0001-7974-7059</orcidid><orcidid>https://orcid.org/0000-0003-2463-4553</orcidid><orcidid>https://orcid.org/0000-0002-5057-7428</orcidid></search><sort><creationdate>2021</creationdate><title>Multiscale Adversarial and Weighted Gradient Domain Adaptive Network for Data Scarcity Surface Defect Detection</title><author>Song, Yiguo ; Liu, Zhenyu ; Wang, Jiahui ; Tang, Ruining ; Duan, Guifang ; Tan, Jianrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6db50b8c2963d4d9c5a52381e31d8edb0982e17310bdacb264d737983a06f5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Adversarial training</topic><topic>Annotations</topic><topic>Back propagation</topic><topic>Datasets</topic><topic>Detectors</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Knowledge management</topic><topic>machine vision</topic><topic>Production methods</topic><topic>surface defect detection</topic><topic>Surface defects</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yiguo</creatorcontrib><creatorcontrib>Liu, Zhenyu</creatorcontrib><creatorcontrib>Wang, Jiahui</creatorcontrib><creatorcontrib>Tang, Ruining</creatorcontrib><creatorcontrib>Duan, Guifang</creatorcontrib><creatorcontrib>Tan, Jianrong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Yiguo</au><au>Liu, Zhenyu</au><au>Wang, Jiahui</au><au>Tang, Ruining</au><au>Duan, Guifang</au><au>Tan, Jianrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Adversarial and Weighted Gradient Domain Adaptive Network for Data Scarcity Surface Defect Detection</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Surface defect detection is a challenging task in industrial manufacture. Recent methods using supervised learning need a large-scale dataset to achieve precise detection. However, the time-consuming and the difficulty of data acquisition make it difficult to build a large-scale dataset. This article proposes a domain adaptive network, called multiscale adversarial and weighted gradient domain adaptive network (MWDAN) for data scarcity surface defect detection. By MWDAN, the detection model trained from a small-scale dataset can gain the knowledge of transfer from another large-scale dataset, that is to say, even for a training dataset that is difficult to collect huge amounts of data, a good defect detection model can also be constructed, aided by another dataset that is relatively easy to acquire. The MWDAN is constructed in two levels. In the image level, a multiscale domain feature adaptation approach is proposed to solve the domain shift between the source domain and the target domain. In the instance level, a piecewise weighted gradient reversal layer (PWGRL) is designed to balance the weight of the backpropagation gradient for the hard- and easy-confused samples in domain classification and force confusion. Then, the PWGRL can reduce the local instance difference to further promote domain consistency. The experiments on mental surface defect detection show encourage results by the proposed MWDAN method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3096284</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0922-7557</orcidid><orcidid>https://orcid.org/0000-0002-7425-341X</orcidid><orcidid>https://orcid.org/0000-0003-3471-2666</orcidid><orcidid>https://orcid.org/0000-0001-7974-7059</orcidid><orcidid>https://orcid.org/0000-0003-2463-4553</orcidid><orcidid>https://orcid.org/0000-0002-5057-7428</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9481147
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive systems
Adversarial training
Annotations
Back propagation
Datasets
Detectors
domain adaptation
Domains
Feature extraction
Image acquisition
Knowledge management
machine vision
Production methods
surface defect detection
Surface defects
Task analysis
Training
title Multiscale Adversarial and Weighted Gradient Domain Adaptive Network for Data Scarcity Surface Defect Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Adversarial%20and%20Weighted%20Gradient%20Domain%20Adaptive%20Network%20for%20Data%20Scarcity%20Surface%20Defect%20Detection&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Song,%20Yiguo&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3096284&rft_dat=%3Cproquest_RIE%3E2555725685%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555725685&rft_id=info:pmid/&rft_ieee_id=9481147&rfr_iscdi=true