Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations

The soil moisture changes (\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}) have a significant influence on forestry, hydrology, meteorology, agriculture, and climate change. Interferometric synthetic aperture radar (InSAR), as a potential remote sensing tool for change detection, was relatively less inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.7179-7197
Hauptverfasser: Ranjbar, Sadegh, Akhoondzadeh, Mehdi, Brisco, Brian, Amani, Meisam, Hosseini, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7197
container_issue
container_start_page 7179
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Ranjbar, Sadegh
Akhoondzadeh, Mehdi
Brisco, Brian
Amani, Meisam
Hosseini, Mehdi
description The soil moisture changes (\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}) have a significant influence on forestry, hydrology, meteorology, agriculture, and climate change. Interferometric synthetic aperture radar (InSAR), as a potential remote sensing tool for change detection, was relatively less investigated for monitoring this parameter. DInSAR phase ({\boldsymbol{\varphi }}) is sensitive to the changes in soil moisture ({{\boldsymbol{M}}_{\boldsymbol{v}}}), and thus, can be potentially used for monitoring \Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}. In this article, the relations between {\boldsymbol{\varphi }} and \Delta {{\boldsymbol{M}}_{\boldsymbol{v}}} over wheat, canola, corn, soybean, weed, peas, and bare fields were investigated using an empirical regression technique. To this end, dual-polarimetric C-band Sentinel-1A and quad-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) airborne datasets were employed. The regression model showed the coefficient of determination (R 2 ) of 40% to 56% and RMSE of 4.3 vol.% to 6.1 vol.% between the measured and estimated \Delta {{\boldsymbol{M}}_{\boldsymbol{v}}} for different crop types when the temporal baseline (\Delta {\boldsymbol{T}}) was very short. As expected, higher accuracies were obtained using UAVSAR given its very short \Delta {\boldsymbol{T}} and its longer wavelength with R 2 of 47% to 59% and RMSE of 4.1 vol.% to 6.7 vol.% for different crop types. However, using the Sentinel-1 data with the long \Delta {\boldsymbol{T}} and shorter wavelength (5.6 cm), the accuracies of {{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}} estimations decreased significantly. The results of this study demonstrated that
doi_str_mv 10.1109/JSTARS.2021.3096063
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9479760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9479760</ieee_id><doaj_id>oai_doaj_org_article_829ae991e16c4aa089570780d62757b9</doaj_id><sourcerecordid>2556487148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ac7403211484616f3a0e0e54ce2449f68376627c7e0d915281d9350a5dcd1fe13</originalsourceid><addsrcrecordid>eNo9UUtvEzEQthBIhMIv6MUS5w0z69f6GEVAg4KKmiJxsxzvbOooXRd7g8S_x2GrnkYz872kj7FrhCUi2E_fdveru92yhRaXAqwGLV6xRYsKG1RCvWYLtMI2KEG-Ze9KOQLo1lixYL92KZ749xTLdM7E1w9-PFDdxzilHMcDH3J65Gvux55vm_1l7FZ3fDNOlAeqP5pyDPzHgy_Eb_eF8h8_xTSW9-zN4E-FPjzPK_bzy-f79U2zvf26Wa-2TZDQTY0PRoJoEWUnNepBeCAgJQO1UtpBd8LoGjUYgt6iajvsrVDgVR96HAjFFdvMun3yR_eU46PPf13y0f0_pHxwPk8xnMh1rfVkLRLqIL2HzioDpoO-Giizt1Xr46z1lNPvM5XJHdM5jzW-a5XSsjM1ZkWJGRVyKiXT8OKK4C51uLkOd6nDPddRWdczKxLRC8NKY40G8Q_kooQD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556487148</pqid></control><display><type>article</type><title>Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ranjbar, Sadegh ; Akhoondzadeh, Mehdi ; Brisco, Brian ; Amani, Meisam ; Hosseini, Mehdi</creator><creatorcontrib>Ranjbar, Sadegh ; Akhoondzadeh, Mehdi ; Brisco, Brian ; Amani, Meisam ; Hosseini, Mehdi</creatorcontrib><description><![CDATA[The soil moisture changes (<inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>) have a significant influence on forestry, hydrology, meteorology, agriculture, and climate change. Interferometric synthetic aperture radar (InSAR), as a potential remote sensing tool for change detection, was relatively less investigated for monitoring this parameter. DInSAR phase (<inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula>) is sensitive to the changes in soil moisture (<inline-formula><tex-math notation="LaTeX">{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>), and thus, can be potentially used for monitoring <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>. In this article, the relations between <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> over wheat, canola, corn, soybean, weed, peas, and bare fields were investigated using an empirical regression technique. To this end, dual-polarimetric C-band Sentinel-1A and quad-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) airborne datasets were employed. The regression model showed the coefficient of determination (R 2 ) of 40% to 56% and RMSE of 4.3 vol.% to 6.1 vol.% between the measured and estimated <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> for different crop types when the temporal baseline (<inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula>) was very short. As expected, higher accuracies were obtained using UAVSAR given its very short <inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula> and its longer wavelength with R 2 of 47% to 59% and RMSE of 4.1 vol.% to 6.7 vol.% for different crop types. However, using the Sentinel-1 data with the long <inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula> and shorter wavelength (5.6 cm), the accuracies of <inline-formula><tex-math notation="LaTeX">{{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> estimations decreased significantly. The results of this study demonstrated that using the <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula> information from Sentinel-1 data is a promising approach for monitoring <inline-formula><tex-math notation="LaTeX">{{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> at an early growing season or before the crop starts growing, but using L-band SAR data and lower temporal baselines are recommended once the biomass increases.]]></description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3096063</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Airborne radar ; Airborne remote sensing ; C band ; Change detection ; Climate change ; Crops ; Environmental monitoring ; Growing season ; Hydrology ; interferometric phase ; Interferometric synthetic aperture radar ; Interferometry ; L-band ; Meteorology ; Monitoring ; Parameter sensitivity ; Radar ; Radar polarimetry ; Regression models ; Remote sensing ; SAR (radar) ; Sea measurements ; Soil ; Soil measurements ; Soil moisture ; Soybeans ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Vegetation mapping ; Wavelength</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.7179-7197</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ac7403211484616f3a0e0e54ce2449f68376627c7e0d915281d9350a5dcd1fe13</citedby><cites>FETCH-LOGICAL-c408t-ac7403211484616f3a0e0e54ce2449f68376627c7e0d915281d9350a5dcd1fe13</cites><orcidid>0000-0001-8439-362X ; 0000-0002-2835-5191 ; 0000-0001-5561-1552 ; 0000-0002-9495-4010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Ranjbar, Sadegh</creatorcontrib><creatorcontrib>Akhoondzadeh, Mehdi</creatorcontrib><creatorcontrib>Brisco, Brian</creatorcontrib><creatorcontrib>Amani, Meisam</creatorcontrib><creatorcontrib>Hosseini, Mehdi</creatorcontrib><title>Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description><![CDATA[The soil moisture changes (<inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>) have a significant influence on forestry, hydrology, meteorology, agriculture, and climate change. Interferometric synthetic aperture radar (InSAR), as a potential remote sensing tool for change detection, was relatively less investigated for monitoring this parameter. DInSAR phase (<inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula>) is sensitive to the changes in soil moisture (<inline-formula><tex-math notation="LaTeX">{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>), and thus, can be potentially used for monitoring <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>. In this article, the relations between <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> over wheat, canola, corn, soybean, weed, peas, and bare fields were investigated using an empirical regression technique. To this end, dual-polarimetric C-band Sentinel-1A and quad-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) airborne datasets were employed. The regression model showed the coefficient of determination (R 2 ) of 40% to 56% and RMSE of 4.3 vol.% to 6.1 vol.% between the measured and estimated <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> for different crop types when the temporal baseline (<inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula>) was very short. As expected, higher accuracies were obtained using UAVSAR given its very short <inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula> and its longer wavelength with R 2 of 47% to 59% and RMSE of 4.1 vol.% to 6.7 vol.% for different crop types. However, using the Sentinel-1 data with the long <inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula> and shorter wavelength (5.6 cm), the accuracies of <inline-formula><tex-math notation="LaTeX">{{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> estimations decreased significantly. The results of this study demonstrated that using the <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula> information from Sentinel-1 data is a promising approach for monitoring <inline-formula><tex-math notation="LaTeX">{{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> at an early growing season or before the crop starts growing, but using L-band SAR data and lower temporal baselines are recommended once the biomass increases.]]></description><subject>Accuracy</subject><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>C band</subject><subject>Change detection</subject><subject>Climate change</subject><subject>Crops</subject><subject>Environmental monitoring</subject><subject>Growing season</subject><subject>Hydrology</subject><subject>interferometric phase</subject><subject>Interferometric synthetic aperture radar</subject><subject>Interferometry</subject><subject>L-band</subject><subject>Meteorology</subject><subject>Monitoring</subject><subject>Parameter sensitivity</subject><subject>Radar</subject><subject>Radar polarimetry</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Sea measurements</subject><subject>Soil</subject><subject>Soil measurements</subject><subject>Soil moisture</subject><subject>Soybeans</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Vegetation mapping</subject><subject>Wavelength</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UUtvEzEQthBIhMIv6MUS5w0z69f6GEVAg4KKmiJxsxzvbOooXRd7g8S_x2GrnkYz872kj7FrhCUi2E_fdveru92yhRaXAqwGLV6xRYsKG1RCvWYLtMI2KEG-Ze9KOQLo1lixYL92KZ749xTLdM7E1w9-PFDdxzilHMcDH3J65Gvux55vm_1l7FZ3fDNOlAeqP5pyDPzHgy_Eb_eF8h8_xTSW9-zN4E-FPjzPK_bzy-f79U2zvf26Wa-2TZDQTY0PRoJoEWUnNepBeCAgJQO1UtpBd8LoGjUYgt6iajvsrVDgVR96HAjFFdvMun3yR_eU46PPf13y0f0_pHxwPk8xnMh1rfVkLRLqIL2HzioDpoO-Giizt1Xr46z1lNPvM5XJHdM5jzW-a5XSsjM1ZkWJGRVyKiXT8OKK4C51uLkOd6nDPddRWdczKxLRC8NKY40G8Q_kooQD</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ranjbar, Sadegh</creator><creator>Akhoondzadeh, Mehdi</creator><creator>Brisco, Brian</creator><creator>Amani, Meisam</creator><creator>Hosseini, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8439-362X</orcidid><orcidid>https://orcid.org/0000-0002-2835-5191</orcidid><orcidid>https://orcid.org/0000-0001-5561-1552</orcidid><orcidid>https://orcid.org/0000-0002-9495-4010</orcidid></search><sort><creationdate>2021</creationdate><title>Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations</title><author>Ranjbar, Sadegh ; Akhoondzadeh, Mehdi ; Brisco, Brian ; Amani, Meisam ; Hosseini, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ac7403211484616f3a0e0e54ce2449f68376627c7e0d915281d9350a5dcd1fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>C band</topic><topic>Change detection</topic><topic>Climate change</topic><topic>Crops</topic><topic>Environmental monitoring</topic><topic>Growing season</topic><topic>Hydrology</topic><topic>interferometric phase</topic><topic>Interferometric synthetic aperture radar</topic><topic>Interferometry</topic><topic>L-band</topic><topic>Meteorology</topic><topic>Monitoring</topic><topic>Parameter sensitivity</topic><topic>Radar</topic><topic>Radar polarimetry</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Sea measurements</topic><topic>Soil</topic><topic>Soil measurements</topic><topic>Soil moisture</topic><topic>Soybeans</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Vegetation mapping</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjbar, Sadegh</creatorcontrib><creatorcontrib>Akhoondzadeh, Mehdi</creatorcontrib><creatorcontrib>Brisco, Brian</creatorcontrib><creatorcontrib>Amani, Meisam</creatorcontrib><creatorcontrib>Hosseini, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbar, Sadegh</au><au>Akhoondzadeh, Mehdi</au><au>Brisco, Brian</au><au>Amani, Meisam</au><au>Hosseini, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>7179</spage><epage>7197</epage><pages>7179-7197</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract><![CDATA[The soil moisture changes (<inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>) have a significant influence on forestry, hydrology, meteorology, agriculture, and climate change. Interferometric synthetic aperture radar (InSAR), as a potential remote sensing tool for change detection, was relatively less investigated for monitoring this parameter. DInSAR phase (<inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula>) is sensitive to the changes in soil moisture (<inline-formula><tex-math notation="LaTeX">{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>), and thus, can be potentially used for monitoring <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula>. In this article, the relations between <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> over wheat, canola, corn, soybean, weed, peas, and bare fields were investigated using an empirical regression technique. To this end, dual-polarimetric C-band Sentinel-1A and quad-polarimetric L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) airborne datasets were employed. The regression model showed the coefficient of determination (R 2 ) of 40% to 56% and RMSE of 4.3 vol.% to 6.1 vol.% between the measured and estimated <inline-formula><tex-math notation="LaTeX">\Delta {{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> for different crop types when the temporal baseline (<inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula>) was very short. As expected, higher accuracies were obtained using UAVSAR given its very short <inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula> and its longer wavelength with R 2 of 47% to 59% and RMSE of 4.1 vol.% to 6.7 vol.% for different crop types. However, using the Sentinel-1 data with the long <inline-formula><tex-math notation="LaTeX">\Delta {\boldsymbol{T}}</tex-math></inline-formula> and shorter wavelength (5.6 cm), the accuracies of <inline-formula><tex-math notation="LaTeX">{{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> estimations decreased significantly. The results of this study demonstrated that using the <inline-formula><tex-math notation="LaTeX">{\boldsymbol{\varphi }}</tex-math></inline-formula> information from Sentinel-1 data is a promising approach for monitoring <inline-formula><tex-math notation="LaTeX">{{\bf \Delta }}{{\boldsymbol{M}}_{\boldsymbol{v}}}</tex-math></inline-formula> at an early growing season or before the crop starts growing, but using L-band SAR data and lower temporal baselines are recommended once the biomass increases.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3096063</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8439-362X</orcidid><orcidid>https://orcid.org/0000-0002-2835-5191</orcidid><orcidid>https://orcid.org/0000-0001-5561-1552</orcidid><orcidid>https://orcid.org/0000-0002-9495-4010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.7179-7197
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_9479760
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Airborne radar
Airborne remote sensing
C band
Change detection
Climate change
Crops
Environmental monitoring
Growing season
Hydrology
interferometric phase
Interferometric synthetic aperture radar
Interferometry
L-band
Meteorology
Monitoring
Parameter sensitivity
Radar
Radar polarimetry
Regression models
Remote sensing
SAR (radar)
Sea measurements
Soil
Soil measurements
Soil moisture
Soybeans
Synthetic aperture radar
synthetic aperture radar (SAR)
Vegetation mapping
Wavelength
title Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20Moisture%20Change%20Monitoring%20from%20C%20and%20L-band%20SAR%20Interferometric%20Phase%20Observations&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ranjbar,%20Sadegh&rft.date=2021&rft.volume=14&rft.spage=7179&rft.epage=7197&rft.pages=7179-7197&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3096063&rft_dat=%3Cproquest_ieee_%3E2556487148%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556487148&rft_id=info:pmid/&rft_ieee_id=9479760&rft_doaj_id=oai_doaj_org_article_829ae991e16c4aa089570780d62757b9&rfr_iscdi=true