Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification
Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2021, Vol.29, p.2421-2433 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2433 |
---|---|
container_issue | |
container_start_page | 2421 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 29 |
creator | Munir, Kashif Zhao, Hai Li, Zuchao |
description | Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results. |
doi_str_mv | 10.1109/TASLP.2021.3096041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9479751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9479751</ieee_id><sourcerecordid>2557979389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpH4BLJM4p61cdH6tCoVIkEPTGwXLdNXKVJsVOefx7Elo47a40M5r9CLmkMKYU9M1y-lI-jRkwOuagJyDoCRkwznSuOYjTv51pOCejlDYAQEFprcSAvJZoYx3qt2zW1C1-tfn000bsr4-m2rehqW2VzUPVYkyZb2K22O6q4EKb3Ybkmn1MmD1jZXtlNqtsSsEH93tekDNvq4Sj4xyS5fxuOXvIy8f7xWxa5o5p2ea40rKQThZUIHjvuNAICoSQXLEJLcCrlZp4odRKK8Ytd2rtus-YRrpeF3xIrg-xu9i87zG1ZtPV6monw6RUWmle6E7FDioXm5QierOLYWvjt6FgeozmF6PpMZojxs50dTAFRPw3aNGFSsp_AEZQboY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557979389</pqid></control><display><type>article</type><title>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Munir, Kashif ; Zhao, Hai ; Li, Zuchao</creator><creatorcontrib>Munir, Kashif ; Zhao, Hai ; Li, Zuchao</creatorcontrib><description>Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2021.3096041</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; adaptive convolution ; Artificial neural networks ; attention mechanism ; CDTB ; Classification ; CNNs ; Coders ; Context ; contextual information ; Convolution ; Discourse relations ; Encoding ; Feature extraction ; IDRC ; Learning ; Natural language processing ; PDTB ; Representations ; Semantics ; Sentences ; Speech processing ; Task analysis</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2021, Vol.29, p.2421-2433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</citedby><cites>FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</cites><orcidid>0000-0001-5100-2880 ; 0000-0003-0436-8446 ; 0000-0001-7290-0487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9479751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9479751$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Munir, Kashif</creatorcontrib><creatorcontrib>Zhao, Hai</creatorcontrib><creatorcontrib>Li, Zuchao</creatorcontrib><title>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results.</description><subject>Adaptation models</subject><subject>adaptive convolution</subject><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>CDTB</subject><subject>Classification</subject><subject>CNNs</subject><subject>Coders</subject><subject>Context</subject><subject>contextual information</subject><subject>Convolution</subject><subject>Discourse relations</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>IDRC</subject><subject>Learning</subject><subject>Natural language processing</subject><subject>PDTB</subject><subject>Representations</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Speech processing</subject><subject>Task analysis</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EElXpH4BLJM4p61cdH6tCoVIkEPTGwXLdNXKVJsVOefx7Elo47a40M5r9CLmkMKYU9M1y-lI-jRkwOuagJyDoCRkwznSuOYjTv51pOCejlDYAQEFprcSAvJZoYx3qt2zW1C1-tfn000bsr4-m2rehqW2VzUPVYkyZb2K22O6q4EKb3Ybkmn1MmD1jZXtlNqtsSsEH93tekDNvq4Sj4xyS5fxuOXvIy8f7xWxa5o5p2ea40rKQThZUIHjvuNAICoSQXLEJLcCrlZp4odRKK8Ytd2rtus-YRrpeF3xIrg-xu9i87zG1ZtPV6monw6RUWmle6E7FDioXm5QierOLYWvjt6FgeozmF6PpMZojxs50dTAFRPw3aNGFSsp_AEZQboY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Munir, Kashif</creator><creator>Zhao, Hai</creator><creator>Li, Zuchao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5100-2880</orcidid><orcidid>https://orcid.org/0000-0003-0436-8446</orcidid><orcidid>https://orcid.org/0000-0001-7290-0487</orcidid></search><sort><creationdate>2021</creationdate><title>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</title><author>Munir, Kashif ; Zhao, Hai ; Li, Zuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>adaptive convolution</topic><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>CDTB</topic><topic>Classification</topic><topic>CNNs</topic><topic>Coders</topic><topic>Context</topic><topic>contextual information</topic><topic>Convolution</topic><topic>Discourse relations</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>IDRC</topic><topic>Learning</topic><topic>Natural language processing</topic><topic>PDTB</topic><topic>Representations</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Speech processing</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munir, Kashif</creatorcontrib><creatorcontrib>Zhao, Hai</creatorcontrib><creatorcontrib>Li, Zuchao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munir, Kashif</au><au>Zhao, Hai</au><au>Li, Zuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>2421</spage><epage>2433</epage><pages>2421-2433</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2021.3096041</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5100-2880</orcidid><orcidid>https://orcid.org/0000-0003-0436-8446</orcidid><orcidid>https://orcid.org/0000-0001-7290-0487</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2021, Vol.29, p.2421-2433 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_ieee_primary_9479751 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models adaptive convolution Artificial neural networks attention mechanism CDTB Classification CNNs Coders Context contextual information Convolution Discourse relations Encoding Feature extraction IDRC Learning Natural language processing PDTB Representations Semantics Sentences Speech processing Task analysis |
title | Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Context-Aware%20Convolutional%20Filters%20for%20Implicit%20Discourse%20Relation%20Classification&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Munir,%20Kashif&rft.date=2021&rft.volume=29&rft.spage=2421&rft.epage=2433&rft.pages=2421-2433&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASLP.2021.3096041&rft_dat=%3Cproquest_RIE%3E2557979389%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557979389&rft_id=info:pmid/&rft_ieee_id=9479751&rfr_iscdi=true |