Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification

Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2021, Vol.29, p.2421-2433
Hauptverfasser: Munir, Kashif, Zhao, Hai, Li, Zuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2433
container_issue
container_start_page 2421
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 29
creator Munir, Kashif
Zhao, Hai
Li, Zuchao
description Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results.
doi_str_mv 10.1109/TASLP.2021.3096041
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9479751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9479751</ieee_id><sourcerecordid>2557979389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EElXpH4BLJM4p61cdH6tCoVIkEPTGwXLdNXKVJsVOefx7Elo47a40M5r9CLmkMKYU9M1y-lI-jRkwOuagJyDoCRkwznSuOYjTv51pOCejlDYAQEFprcSAvJZoYx3qt2zW1C1-tfn000bsr4-m2rehqW2VzUPVYkyZb2K22O6q4EKb3Ybkmn1MmD1jZXtlNqtsSsEH93tekDNvq4Sj4xyS5fxuOXvIy8f7xWxa5o5p2ea40rKQThZUIHjvuNAICoSQXLEJLcCrlZp4odRKK8Ytd2rtus-YRrpeF3xIrg-xu9i87zG1ZtPV6monw6RUWmle6E7FDioXm5QierOLYWvjt6FgeozmF6PpMZojxs50dTAFRPw3aNGFSsp_AEZQboY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557979389</pqid></control><display><type>article</type><title>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Munir, Kashif ; Zhao, Hai ; Li, Zuchao</creator><creatorcontrib>Munir, Kashif ; Zhao, Hai ; Li, Zuchao</creatorcontrib><description>Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2021.3096041</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; adaptive convolution ; Artificial neural networks ; attention mechanism ; CDTB ; Classification ; CNNs ; Coders ; Context ; contextual information ; Convolution ; Discourse relations ; Encoding ; Feature extraction ; IDRC ; Learning ; Natural language processing ; PDTB ; Representations ; Semantics ; Sentences ; Speech processing ; Task analysis</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2021, Vol.29, p.2421-2433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</citedby><cites>FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</cites><orcidid>0000-0001-5100-2880 ; 0000-0003-0436-8446 ; 0000-0001-7290-0487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9479751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9479751$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Munir, Kashif</creatorcontrib><creatorcontrib>Zhao, Hai</creatorcontrib><creatorcontrib>Li, Zuchao</creatorcontrib><title>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results.</description><subject>Adaptation models</subject><subject>adaptive convolution</subject><subject>Artificial neural networks</subject><subject>attention mechanism</subject><subject>CDTB</subject><subject>Classification</subject><subject>CNNs</subject><subject>Coders</subject><subject>Context</subject><subject>contextual information</subject><subject>Convolution</subject><subject>Discourse relations</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>IDRC</subject><subject>Learning</subject><subject>Natural language processing</subject><subject>PDTB</subject><subject>Representations</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Speech processing</subject><subject>Task analysis</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EElXpH4BLJM4p61cdH6tCoVIkEPTGwXLdNXKVJsVOefx7Elo47a40M5r9CLmkMKYU9M1y-lI-jRkwOuagJyDoCRkwznSuOYjTv51pOCejlDYAQEFprcSAvJZoYx3qt2zW1C1-tfn000bsr4-m2rehqW2VzUPVYkyZb2K22O6q4EKb3Ybkmn1MmD1jZXtlNqtsSsEH93tekDNvq4Sj4xyS5fxuOXvIy8f7xWxa5o5p2ea40rKQThZUIHjvuNAICoSQXLEJLcCrlZp4odRKK8Ytd2rtus-YRrpeF3xIrg-xu9i87zG1ZtPV6monw6RUWmle6E7FDioXm5QierOLYWvjt6FgeozmF6PpMZojxs50dTAFRPw3aNGFSsp_AEZQboY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Munir, Kashif</creator><creator>Zhao, Hai</creator><creator>Li, Zuchao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5100-2880</orcidid><orcidid>https://orcid.org/0000-0003-0436-8446</orcidid><orcidid>https://orcid.org/0000-0001-7290-0487</orcidid></search><sort><creationdate>2021</creationdate><title>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</title><author>Munir, Kashif ; Zhao, Hai ; Li, Zuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-eb9585c5814e0ffc349e0704453726180f7b76f477b9723a3c7dc93029e1dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>adaptive convolution</topic><topic>Artificial neural networks</topic><topic>attention mechanism</topic><topic>CDTB</topic><topic>Classification</topic><topic>CNNs</topic><topic>Coders</topic><topic>Context</topic><topic>contextual information</topic><topic>Convolution</topic><topic>Discourse relations</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>IDRC</topic><topic>Learning</topic><topic>Natural language processing</topic><topic>PDTB</topic><topic>Representations</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Speech processing</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munir, Kashif</creatorcontrib><creatorcontrib>Zhao, Hai</creatorcontrib><creatorcontrib>Li, Zuchao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munir, Kashif</au><au>Zhao, Hai</au><au>Li, Zuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>2421</spage><epage>2433</epage><pages>2421-2433</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>Implicit discourse relation classification (IDRC) is considered the most difficult component of shallow discourse parsing as the relation prediction in the absence of necessary clues requires a deep understanding of the context information of the sentences. Convolutional neural networks (CNNs) have emerged as an important encoding block for sentences in natural language processing (NLP). CNNs use a specific set of filters for the inputs which may lead to the partial coverage of contextual clues. Furthermore, conventional CNNs may not allow the initial communication between the sentences which is a crucial step for IDRC. We present an adaptive convolution approach for IDRC that utilizes context aware filters for the convolution operation. The goal is to abstract the context of sentences in the filters and let them interact with sentence representations, i.e. learning the representations through learned filters. Our model acts as a cross questioning agent by generating filters from one argument and convolving them with the other for the IDRC task. This process is analogous to the attention mechanism because both methods aim at abstracting contextual information. Different from the attention mechanism, our approach directly encodes the contextual representations in the form of filters and allows the initial communication between arguments during encoding. Furthermore, the adaptive convolution can also work alongside the attention mechanism to enhance the representational ability of the adaptive CNN encoder. Experiments on PDTB 2.0 and CDTB datasets show that our approach outperforms all the baselines by a fair margin and achieves excellent results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2021.3096041</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5100-2880</orcidid><orcidid>https://orcid.org/0000-0003-0436-8446</orcidid><orcidid>https://orcid.org/0000-0001-7290-0487</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2021, Vol.29, p.2421-2433
issn 2329-9290
2329-9304
language eng
recordid cdi_ieee_primary_9479751
source IEEE Electronic Library (IEL)
subjects Adaptation models
adaptive convolution
Artificial neural networks
attention mechanism
CDTB
Classification
CNNs
Coders
Context
contextual information
Convolution
Discourse relations
Encoding
Feature extraction
IDRC
Learning
Natural language processing
PDTB
Representations
Semantics
Sentences
Speech processing
Task analysis
title Learning Context-Aware Convolutional Filters for Implicit Discourse Relation Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Context-Aware%20Convolutional%20Filters%20for%20Implicit%20Discourse%20Relation%20Classification&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Munir,%20Kashif&rft.date=2021&rft.volume=29&rft.spage=2421&rft.epage=2433&rft.pages=2421-2433&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASLP.2021.3096041&rft_dat=%3Cproquest_RIE%3E2557979389%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557979389&rft_id=info:pmid/&rft_ieee_id=9479751&rfr_iscdi=true