Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera
We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light...
Gespeichert in:
Veröffentlicht in: | IEEE journal of the Electron Devices Society 2021, Vol.9, p.663-666 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 666 |
---|---|
container_issue | |
container_start_page | 663 |
container_title | IEEE journal of the Electron Devices Society |
container_volume | 9 |
creator | Xiao, Guangheng Du, Wujun Wang, Zhiyun Chen, Guolong Zhu, Lihong Gao, Yulin Chen, Zhong Guo, Ziquan Lu, Yijun |
description | We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of 505~\mu \text{s} at 300 mA, and (2) 5600 fps with time resolution of 179~\mu \text{s} at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively. |
doi_str_mv | 10.1109/JEDS.2021.3095501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9477419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9477419</ieee_id><doaj_id>oai_doaj_org_article_2471d66ca92b4bb9b6c61279effbc123</doaj_id><sourcerecordid>2551363176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</originalsourceid><addsrcrecordid>eNpNkU1vEzEQhlcIJKrSH4C4WOK8wd9eH1ES-qEAh6Zna3Z3HBxl42A7Qvx7vE1VMZd5NX7mHclv03xkdMEYtV8e1qvHBaecLQS1SlH2prniTHetNkK-_U-_b25y3tNaHdNW66smbf_EdhUmPOYQj3Ag2wRV4rGQLU4nTFDOCckq5JJCfy4VIt8Rch1OMxQ9uYUfZBN2v0q7nkIp4bireByRPOVZ39Un8nhCHMkSpmr4oXnn4ZDx5qVfN0_f1tvlXbv5eXu__LppB0l5ab3nwoPGsWe2U1LJvgfjOddWaSas4oOEQTEDPYCXnYVOUI6UC94ZDdSL6-b-4jtG2LtTChOkvy5CcM-DmHYOUgnDAR2Xho1aD2B5X-_YXg-acWPR-35gXFSvzxevU4q_z5iL28dzqv-VHVeKCS2Y0ZViF2pIMeeE_vUqo25Oys1JuTkp95JU3fl02QmI-MpbaYxkVvwDT42O6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551363176</pqid></control><display><type>article</type><title>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiao, Guangheng ; Du, Wujun ; Wang, Zhiyun ; Chen, Guolong ; Zhu, Lihong ; Gao, Yulin ; Chen, Zhong ; Guo, Ziquan ; Lu, Yijun</creator><creatorcontrib>Xiao, Guangheng ; Du, Wujun ; Wang, Zhiyun ; Chen, Guolong ; Zhu, Lihong ; Gao, Yulin ; Chen, Zhong ; Guo, Ziquan ; Lu, Yijun</creatorcontrib><description><![CDATA[We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of <inline-formula> <tex-math notation="LaTeX">505~\mu \text{s} </tex-math></inline-formula> at 300 mA, and (2) 5600 fps with time resolution of <inline-formula> <tex-math notation="LaTeX">179~\mu \text{s} </tex-math></inline-formula> at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.]]></description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2021.3095501</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; GaN LED ; high speed camera ; High speed cameras ; Incident light ; Infrared imaging ; Light emitting diodes ; Light sources ; Luminous intensity ; reflective light ; Spatial resolution ; Table lookup ; Temperature dependence ; Temperature distribution ; Temperature measurement ; Thermal imaging ; Transient analysis ; transient temperature</subject><ispartof>IEEE journal of the Electron Devices Society, 2021, Vol.9, p.663-666</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</citedby><cites>FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</cites><orcidid>0000-0002-1247-6597 ; 0000-0002-7919-1967 ; 0000-0002-4326-7368 ; 0000-0002-1473-2224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9477419$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xiao, Guangheng</creatorcontrib><creatorcontrib>Du, Wujun</creatorcontrib><creatorcontrib>Wang, Zhiyun</creatorcontrib><creatorcontrib>Chen, Guolong</creatorcontrib><creatorcontrib>Zhu, Lihong</creatorcontrib><creatorcontrib>Gao, Yulin</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Guo, Ziquan</creatorcontrib><creatorcontrib>Lu, Yijun</creatorcontrib><title>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description><![CDATA[We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of <inline-formula> <tex-math notation="LaTeX">505~\mu \text{s} </tex-math></inline-formula> at 300 mA, and (2) 5600 fps with time resolution of <inline-formula> <tex-math notation="LaTeX">179~\mu \text{s} </tex-math></inline-formula> at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.]]></description><subject>Cameras</subject><subject>GaN LED</subject><subject>high speed camera</subject><subject>High speed cameras</subject><subject>Incident light</subject><subject>Infrared imaging</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Luminous intensity</subject><subject>reflective light</subject><subject>Spatial resolution</subject><subject>Table lookup</subject><subject>Temperature dependence</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Thermal imaging</subject><subject>Transient analysis</subject><subject>transient temperature</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1vEzEQhlcIJKrSH4C4WOK8wd9eH1ES-qEAh6Zna3Z3HBxl42A7Qvx7vE1VMZd5NX7mHclv03xkdMEYtV8e1qvHBaecLQS1SlH2prniTHetNkK-_U-_b25y3tNaHdNW66smbf_EdhUmPOYQj3Ag2wRV4rGQLU4nTFDOCckq5JJCfy4VIt8Rch1OMxQ9uYUfZBN2v0q7nkIp4bireByRPOVZ39Un8nhCHMkSpmr4oXnn4ZDx5qVfN0_f1tvlXbv5eXu__LppB0l5ab3nwoPGsWe2U1LJvgfjOddWaSas4oOEQTEDPYCXnYVOUI6UC94ZDdSL6-b-4jtG2LtTChOkvy5CcM-DmHYOUgnDAR2Xho1aD2B5X-_YXg-acWPR-35gXFSvzxevU4q_z5iL28dzqv-VHVeKCS2Y0ZViF2pIMeeE_vUqo25Oys1JuTkp95JU3fl02QmI-MpbaYxkVvwDT42O6A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xiao, Guangheng</creator><creator>Du, Wujun</creator><creator>Wang, Zhiyun</creator><creator>Chen, Guolong</creator><creator>Zhu, Lihong</creator><creator>Gao, Yulin</creator><creator>Chen, Zhong</creator><creator>Guo, Ziquan</creator><creator>Lu, Yijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1247-6597</orcidid><orcidid>https://orcid.org/0000-0002-7919-1967</orcidid><orcidid>https://orcid.org/0000-0002-4326-7368</orcidid><orcidid>https://orcid.org/0000-0002-1473-2224</orcidid></search><sort><creationdate>2021</creationdate><title>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</title><author>Xiao, Guangheng ; Du, Wujun ; Wang, Zhiyun ; Chen, Guolong ; Zhu, Lihong ; Gao, Yulin ; Chen, Zhong ; Guo, Ziquan ; Lu, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>GaN LED</topic><topic>high speed camera</topic><topic>High speed cameras</topic><topic>Incident light</topic><topic>Infrared imaging</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Luminous intensity</topic><topic>reflective light</topic><topic>Spatial resolution</topic><topic>Table lookup</topic><topic>Temperature dependence</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Thermal imaging</topic><topic>Transient analysis</topic><topic>transient temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Guangheng</creatorcontrib><creatorcontrib>Du, Wujun</creatorcontrib><creatorcontrib>Wang, Zhiyun</creatorcontrib><creatorcontrib>Chen, Guolong</creatorcontrib><creatorcontrib>Zhu, Lihong</creatorcontrib><creatorcontrib>Gao, Yulin</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Guo, Ziquan</creatorcontrib><creatorcontrib>Lu, Yijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Guangheng</au><au>Du, Wujun</au><au>Wang, Zhiyun</au><au>Chen, Guolong</au><au>Zhu, Lihong</au><au>Gao, Yulin</au><au>Chen, Zhong</au><au>Guo, Ziquan</au><au>Lu, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>663</spage><epage>666</epage><pages>663-666</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract><![CDATA[We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of <inline-formula> <tex-math notation="LaTeX">505~\mu \text{s} </tex-math></inline-formula> at 300 mA, and (2) 5600 fps with time resolution of <inline-formula> <tex-math notation="LaTeX">179~\mu \text{s} </tex-math></inline-formula> at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2021.3095501</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1247-6597</orcidid><orcidid>https://orcid.org/0000-0002-7919-1967</orcidid><orcidid>https://orcid.org/0000-0002-4326-7368</orcidid><orcidid>https://orcid.org/0000-0002-1473-2224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6734 |
ispartof | IEEE journal of the Electron Devices Society, 2021, Vol.9, p.663-666 |
issn | 2168-6734 2168-6734 |
language | eng |
recordid | cdi_ieee_primary_9477419 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Cameras GaN LED high speed camera High speed cameras Incident light Infrared imaging Light emitting diodes Light sources Luminous intensity reflective light Spatial resolution Table lookup Temperature dependence Temperature distribution Temperature measurement Thermal imaging Transient analysis transient temperature |
title | Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Transient%20Temperature%20Distribution%20Measurement%20of%20GaN%20Light-Emitting%20Diode%20Using%20High%20Speed%20Camera&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Xiao,%20Guangheng&rft.date=2021&rft.volume=9&rft.spage=663&rft.epage=666&rft.pages=663-666&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2021.3095501&rft_dat=%3Cproquest_ieee_%3E2551363176%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551363176&rft_id=info:pmid/&rft_ieee_id=9477419&rft_doaj_id=oai_doaj_org_article_2471d66ca92b4bb9b6c61279effbc123&rfr_iscdi=true |