Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera

We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2021, Vol.9, p.663-666
Hauptverfasser: Xiao, Guangheng, Du, Wujun, Wang, Zhiyun, Chen, Guolong, Zhu, Lihong, Gao, Yulin, Chen, Zhong, Guo, Ziquan, Lu, Yijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue
container_start_page 663
container_title IEEE journal of the Electron Devices Society
container_volume 9
creator Xiao, Guangheng
Du, Wujun
Wang, Zhiyun
Chen, Guolong
Zhu, Lihong
Gao, Yulin
Chen, Zhong
Guo, Ziquan
Lu, Yijun
description We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of 505~\mu \text{s} at 300 mA, and (2) 5600 fps with time resolution of 179~\mu \text{s} at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.
doi_str_mv 10.1109/JEDS.2021.3095501
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9477419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9477419</ieee_id><doaj_id>oai_doaj_org_article_2471d66ca92b4bb9b6c61279effbc123</doaj_id><sourcerecordid>2551363176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</originalsourceid><addsrcrecordid>eNpNkU1vEzEQhlcIJKrSH4C4WOK8wd9eH1ES-qEAh6Zna3Z3HBxl42A7Qvx7vE1VMZd5NX7mHclv03xkdMEYtV8e1qvHBaecLQS1SlH2prniTHetNkK-_U-_b25y3tNaHdNW66smbf_EdhUmPOYQj3Ag2wRV4rGQLU4nTFDOCckq5JJCfy4VIt8Rch1OMxQ9uYUfZBN2v0q7nkIp4bireByRPOVZ39Un8nhCHMkSpmr4oXnn4ZDx5qVfN0_f1tvlXbv5eXu__LppB0l5ab3nwoPGsWe2U1LJvgfjOddWaSas4oOEQTEDPYCXnYVOUI6UC94ZDdSL6-b-4jtG2LtTChOkvy5CcM-DmHYOUgnDAR2Xho1aD2B5X-_YXg-acWPR-35gXFSvzxevU4q_z5iL28dzqv-VHVeKCS2Y0ZViF2pIMeeE_vUqo25Oys1JuTkp95JU3fl02QmI-MpbaYxkVvwDT42O6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551363176</pqid></control><display><type>article</type><title>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiao, Guangheng ; Du, Wujun ; Wang, Zhiyun ; Chen, Guolong ; Zhu, Lihong ; Gao, Yulin ; Chen, Zhong ; Guo, Ziquan ; Lu, Yijun</creator><creatorcontrib>Xiao, Guangheng ; Du, Wujun ; Wang, Zhiyun ; Chen, Guolong ; Zhu, Lihong ; Gao, Yulin ; Chen, Zhong ; Guo, Ziquan ; Lu, Yijun</creatorcontrib><description><![CDATA[We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of <inline-formula> <tex-math notation="LaTeX">505~\mu \text{s} </tex-math></inline-formula> at 300 mA, and (2) 5600 fps with time resolution of <inline-formula> <tex-math notation="LaTeX">179~\mu \text{s} </tex-math></inline-formula> at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.]]></description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2021.3095501</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; GaN LED ; high speed camera ; High speed cameras ; Incident light ; Infrared imaging ; Light emitting diodes ; Light sources ; Luminous intensity ; reflective light ; Spatial resolution ; Table lookup ; Temperature dependence ; Temperature distribution ; Temperature measurement ; Thermal imaging ; Transient analysis ; transient temperature</subject><ispartof>IEEE journal of the Electron Devices Society, 2021, Vol.9, p.663-666</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</citedby><cites>FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</cites><orcidid>0000-0002-1247-6597 ; 0000-0002-7919-1967 ; 0000-0002-4326-7368 ; 0000-0002-1473-2224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9477419$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Xiao, Guangheng</creatorcontrib><creatorcontrib>Du, Wujun</creatorcontrib><creatorcontrib>Wang, Zhiyun</creatorcontrib><creatorcontrib>Chen, Guolong</creatorcontrib><creatorcontrib>Zhu, Lihong</creatorcontrib><creatorcontrib>Gao, Yulin</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Guo, Ziquan</creatorcontrib><creatorcontrib>Lu, Yijun</creatorcontrib><title>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description><![CDATA[We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of <inline-formula> <tex-math notation="LaTeX">505~\mu \text{s} </tex-math></inline-formula> at 300 mA, and (2) 5600 fps with time resolution of <inline-formula> <tex-math notation="LaTeX">179~\mu \text{s} </tex-math></inline-formula> at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.]]></description><subject>Cameras</subject><subject>GaN LED</subject><subject>high speed camera</subject><subject>High speed cameras</subject><subject>Incident light</subject><subject>Infrared imaging</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Luminous intensity</subject><subject>reflective light</subject><subject>Spatial resolution</subject><subject>Table lookup</subject><subject>Temperature dependence</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Thermal imaging</subject><subject>Transient analysis</subject><subject>transient temperature</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1vEzEQhlcIJKrSH4C4WOK8wd9eH1ES-qEAh6Zna3Z3HBxl42A7Qvx7vE1VMZd5NX7mHclv03xkdMEYtV8e1qvHBaecLQS1SlH2prniTHetNkK-_U-_b25y3tNaHdNW66smbf_EdhUmPOYQj3Ag2wRV4rGQLU4nTFDOCckq5JJCfy4VIt8Rch1OMxQ9uYUfZBN2v0q7nkIp4bireByRPOVZ39Un8nhCHMkSpmr4oXnn4ZDx5qVfN0_f1tvlXbv5eXu__LppB0l5ab3nwoPGsWe2U1LJvgfjOddWaSas4oOEQTEDPYCXnYVOUI6UC94ZDdSL6-b-4jtG2LtTChOkvy5CcM-DmHYOUgnDAR2Xho1aD2B5X-_YXg-acWPR-35gXFSvzxevU4q_z5iL28dzqv-VHVeKCS2Y0ZViF2pIMeeE_vUqo25Oys1JuTkp95JU3fl02QmI-MpbaYxkVvwDT42O6A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xiao, Guangheng</creator><creator>Du, Wujun</creator><creator>Wang, Zhiyun</creator><creator>Chen, Guolong</creator><creator>Zhu, Lihong</creator><creator>Gao, Yulin</creator><creator>Chen, Zhong</creator><creator>Guo, Ziquan</creator><creator>Lu, Yijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1247-6597</orcidid><orcidid>https://orcid.org/0000-0002-7919-1967</orcidid><orcidid>https://orcid.org/0000-0002-4326-7368</orcidid><orcidid>https://orcid.org/0000-0002-1473-2224</orcidid></search><sort><creationdate>2021</creationdate><title>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</title><author>Xiao, Guangheng ; Du, Wujun ; Wang, Zhiyun ; Chen, Guolong ; Zhu, Lihong ; Gao, Yulin ; Chen, Zhong ; Guo, Ziquan ; Lu, Yijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-ff23fa6edb1985454bba7f22695613952c4ac517abaaf489a8302e0232876a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>GaN LED</topic><topic>high speed camera</topic><topic>High speed cameras</topic><topic>Incident light</topic><topic>Infrared imaging</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Luminous intensity</topic><topic>reflective light</topic><topic>Spatial resolution</topic><topic>Table lookup</topic><topic>Temperature dependence</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Thermal imaging</topic><topic>Transient analysis</topic><topic>transient temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Guangheng</creatorcontrib><creatorcontrib>Du, Wujun</creatorcontrib><creatorcontrib>Wang, Zhiyun</creatorcontrib><creatorcontrib>Chen, Guolong</creatorcontrib><creatorcontrib>Zhu, Lihong</creatorcontrib><creatorcontrib>Gao, Yulin</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Guo, Ziquan</creatorcontrib><creatorcontrib>Lu, Yijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Guangheng</au><au>Du, Wujun</au><au>Wang, Zhiyun</au><au>Chen, Guolong</au><au>Zhu, Lihong</au><au>Gao, Yulin</au><au>Chen, Zhong</au><au>Guo, Ziquan</au><au>Lu, Yijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>663</spage><epage>666</epage><pages>663-666</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract><![CDATA[We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of <inline-formula> <tex-math notation="LaTeX">505~\mu \text{s} </tex-math></inline-formula> at 300 mA, and (2) 5600 fps with time resolution of <inline-formula> <tex-math notation="LaTeX">179~\mu \text{s} </tex-math></inline-formula> at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2021.3095501</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1247-6597</orcidid><orcidid>https://orcid.org/0000-0002-7919-1967</orcidid><orcidid>https://orcid.org/0000-0002-4326-7368</orcidid><orcidid>https://orcid.org/0000-0002-1473-2224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2021, Vol.9, p.663-666
issn 2168-6734
2168-6734
language eng
recordid cdi_ieee_primary_9477419
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Cameras
GaN LED
high speed camera
High speed cameras
Incident light
Infrared imaging
Light emitting diodes
Light sources
Luminous intensity
reflective light
Spatial resolution
Table lookup
Temperature dependence
Temperature distribution
Temperature measurement
Thermal imaging
Transient analysis
transient temperature
title Two-Dimensional Transient Temperature Distribution Measurement of GaN Light-Emitting Diode Using High Speed Camera
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Transient%20Temperature%20Distribution%20Measurement%20of%20GaN%20Light-Emitting%20Diode%20Using%20High%20Speed%20Camera&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Xiao,%20Guangheng&rft.date=2021&rft.volume=9&rft.spage=663&rft.epage=666&rft.pages=663-666&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2021.3095501&rft_dat=%3Cproquest_ieee_%3E2551363176%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551363176&rft_id=info:pmid/&rft_ieee_id=9477419&rft_doaj_id=oai_doaj_org_article_2471d66ca92b4bb9b6c61279effbc123&rfr_iscdi=true