Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique
This article reports the concept of a double maximum achievable gain (double- G_{\mathrm{ max}} ) core for the implementation of sub-terahertz high-gain amplifier design. The double- G_{\mathrm{ max}} core is a G_{\mathrm{ max}} core that adopts another linear, lossless, and reciprocal network th...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2021-11, Vol.56 (11), p.3388-3398 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3398 |
---|---|
container_issue | 11 |
container_start_page | 3388 |
container_title | IEEE journal of solid-state circuits |
container_volume | 56 |
creator | Park, Dae-Woong Utomo, Dzuhri Radityo Yun, Byeonghun Mahmood, Hafiz Usman Hong, Jong-Phil Lee, Sang-Gug |
description | This article reports the concept of a double maximum achievable gain (double- G_{\mathrm{ max}} ) core for the implementation of sub-terahertz high-gain amplifier design. The double- G_{\mathrm{ max}} core is a G_{\mathrm{ max}} core that adopts another linear, lossless, and reciprocal network that satisfies the G_{\mathrm{ max}} condition onto an even number of cascaded transistor-level G_{\mathrm{ max}} cores. It is shown that the double- G_{\mathrm{ max}} core, due to its regenerative nature, can achieve much higher gain per stage than that of the same number of cascaded G_{\mathrm{ max}} cores while satisfying the unconditional stability. Implemented in a 65-nm CMOS process, by adopting the proposed double- G_{\mathrm{ max}} core, 247- and 272-GHz two-stage amplifiers achieve the peak gain of 18 and 15 dB, the gain per stage of 9 and 7.5 dB, and the PAE of 4.44% and 2.37%, respectively, while dissipating 21.5 mW. |
doi_str_mv | 10.1109/JSSC.2021.3092168 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9474919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9474919</ieee_id><sourcerecordid>9474919</sourcerecordid><originalsourceid>FETCH-ieee_primary_94749193</originalsourceid><addsrcrecordid>eNp9i8sOwUAUQGdB4vkBYnN_YGqmGjpL78ZSu2dwW1faGToq-Hoi1lYnJyeHsZ4UnpRCDdZxPPN84UtvKJQvR2GNNYWQIVe-EA3Wcu780SAIZZPt5ugoM2BTiCg78ZUmA3G150n0gg1maLDUN7ojTIpLTilh6WCqHR7BGpjbap8jXxX6Ad9zaq27kckgwcPJ0LXCDqunOnfY_bHN-stFMos4IeL2UlKhy-dWBeNASTX8X9_VKEJy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Dae-Woong ; Utomo, Dzuhri Radityo ; Yun, Byeonghun ; Mahmood, Hafiz Usman ; Hong, Jong-Phil ; Lee, Sang-Gug</creator><creatorcontrib>Park, Dae-Woong ; Utomo, Dzuhri Radityo ; Yun, Byeonghun ; Mahmood, Hafiz Usman ; Hong, Jong-Phil ; Lee, Sang-Gug</creatorcontrib><description><![CDATA[This article reports the concept of a double maximum achievable gain (double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula>) core for the implementation of sub-terahertz high-gain amplifier design. The double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core is a <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core that adopts another linear, lossless, and reciprocal network that satisfies the <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> condition onto an even number of cascaded transistor-level <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> cores. It is shown that the double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core, due to its regenerative nature, can achieve much higher gain per stage than that of the same number of cascaded <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> cores while satisfying the unconditional stability. Implemented in a 65-nm CMOS process, by adopting the proposed double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core, 247- and 272-GHz two-stage amplifiers achieve the peak gain of 18 and 15 dB, the gain per stage of 9 and 7.5 dB, and the PAE of 4.44% and 2.37%, respectively, while dissipating 21.5 mW.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>DOI: 10.1109/JSSC.2021.3092168</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplifier ; Boosting ; Circuit stability ; CMOS ; double-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max ; Electrical engineering ; Gain ; gain boosting ; maximum achievable gain (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max) ; mm-wave ; Periodic structures ; Power demand ; terahertz (THz) ; Transistors</subject><ispartof>IEEE journal of solid-state circuits, 2021-11, Vol.56 (11), p.3388-3398</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0367-3556 ; 0000-0003-2822-5300 ; 0000-0001-7847-1329 ; 0000-0001-8074-4090 ; 0000-0001-6322-8588 ; 0000-0003-2755-3935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9474919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9474919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Dae-Woong</creatorcontrib><creatorcontrib>Utomo, Dzuhri Radityo</creatorcontrib><creatorcontrib>Yun, Byeonghun</creatorcontrib><creatorcontrib>Mahmood, Hafiz Usman</creatorcontrib><creatorcontrib>Hong, Jong-Phil</creatorcontrib><creatorcontrib>Lee, Sang-Gug</creatorcontrib><title>Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article reports the concept of a double maximum achievable gain (double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula>) core for the implementation of sub-terahertz high-gain amplifier design. The double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core is a <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core that adopts another linear, lossless, and reciprocal network that satisfies the <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> condition onto an even number of cascaded transistor-level <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> cores. It is shown that the double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core, due to its regenerative nature, can achieve much higher gain per stage than that of the same number of cascaded <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> cores while satisfying the unconditional stability. Implemented in a 65-nm CMOS process, by adopting the proposed double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core, 247- and 272-GHz two-stage amplifiers achieve the peak gain of 18 and 15 dB, the gain per stage of 9 and 7.5 dB, and the PAE of 4.44% and 2.37%, respectively, while dissipating 21.5 mW.]]></description><subject>Amplifier</subject><subject>Boosting</subject><subject>Circuit stability</subject><subject>CMOS</subject><subject>double-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max</subject><subject>Electrical engineering</subject><subject>Gain</subject><subject>gain boosting</subject><subject>maximum achievable gain (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max)</subject><subject>mm-wave</subject><subject>Periodic structures</subject><subject>Power demand</subject><subject>terahertz (THz)</subject><subject>Transistors</subject><issn>0018-9200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9i8sOwUAUQGdB4vkBYnN_YGqmGjpL78ZSu2dwW1faGToq-Hoi1lYnJyeHsZ4UnpRCDdZxPPN84UtvKJQvR2GNNYWQIVe-EA3Wcu780SAIZZPt5ugoM2BTiCg78ZUmA3G150n0gg1maLDUN7ojTIpLTilh6WCqHR7BGpjbap8jXxX6Ad9zaq27kckgwcPJ0LXCDqunOnfY_bHN-stFMos4IeL2UlKhy-dWBeNASTX8X9_VKEJy</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Park, Dae-Woong</creator><creator>Utomo, Dzuhri Radityo</creator><creator>Yun, Byeonghun</creator><creator>Mahmood, Hafiz Usman</creator><creator>Hong, Jong-Phil</creator><creator>Lee, Sang-Gug</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-0367-3556</orcidid><orcidid>https://orcid.org/0000-0003-2822-5300</orcidid><orcidid>https://orcid.org/0000-0001-7847-1329</orcidid><orcidid>https://orcid.org/0000-0001-8074-4090</orcidid><orcidid>https://orcid.org/0000-0001-6322-8588</orcidid><orcidid>https://orcid.org/0000-0003-2755-3935</orcidid></search><sort><creationdate>202111</creationdate><title>Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique</title><author>Park, Dae-Woong ; Utomo, Dzuhri Radityo ; Yun, Byeonghun ; Mahmood, Hafiz Usman ; Hong, Jong-Phil ; Lee, Sang-Gug</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_94749193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplifier</topic><topic>Boosting</topic><topic>Circuit stability</topic><topic>CMOS</topic><topic>double-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max</topic><topic>Electrical engineering</topic><topic>Gain</topic><topic>gain boosting</topic><topic>maximum achievable gain (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max)</topic><topic>mm-wave</topic><topic>Periodic structures</topic><topic>Power demand</topic><topic>terahertz (THz)</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Dae-Woong</creatorcontrib><creatorcontrib>Utomo, Dzuhri Radityo</creatorcontrib><creatorcontrib>Yun, Byeonghun</creatorcontrib><creatorcontrib>Mahmood, Hafiz Usman</creatorcontrib><creatorcontrib>Hong, Jong-Phil</creatorcontrib><creatorcontrib>Lee, Sang-Gug</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Dae-Woong</au><au>Utomo, Dzuhri Radityo</au><au>Yun, Byeonghun</au><au>Mahmood, Hafiz Usman</au><au>Hong, Jong-Phil</au><au>Lee, Sang-Gug</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2021-11</date><risdate>2021</risdate><volume>56</volume><issue>11</issue><spage>3388</spage><epage>3398</epage><pages>3388-3398</pages><issn>0018-9200</issn><coden>IJSCBC</coden><abstract><![CDATA[This article reports the concept of a double maximum achievable gain (double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula>) core for the implementation of sub-terahertz high-gain amplifier design. The double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core is a <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core that adopts another linear, lossless, and reciprocal network that satisfies the <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> condition onto an even number of cascaded transistor-level <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> cores. It is shown that the double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core, due to its regenerative nature, can achieve much higher gain per stage than that of the same number of cascaded <inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> cores while satisfying the unconditional stability. Implemented in a 65-nm CMOS process, by adopting the proposed double-<inline-formula> <tex-math notation="LaTeX">G_{\mathrm{ max}} </tex-math></inline-formula> core, 247- and 272-GHz two-stage amplifiers achieve the peak gain of 18 and 15 dB, the gain per stage of 9 and 7.5 dB, and the PAE of 4.44% and 2.37%, respectively, while dissipating 21.5 mW.]]></abstract><pub>IEEE</pub><doi>10.1109/JSSC.2021.3092168</doi><orcidid>https://orcid.org/0000-0002-0367-3556</orcidid><orcidid>https://orcid.org/0000-0003-2822-5300</orcidid><orcidid>https://orcid.org/0000-0001-7847-1329</orcidid><orcidid>https://orcid.org/0000-0001-8074-4090</orcidid><orcidid>https://orcid.org/0000-0001-6322-8588</orcidid><orcidid>https://orcid.org/0000-0003-2755-3935</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2021-11, Vol.56 (11), p.3388-3398 |
issn | 0018-9200 |
language | eng |
recordid | cdi_ieee_primary_9474919 |
source | IEEE Electronic Library (IEL) |
subjects | Amplifier Boosting Circuit stability CMOS double-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max Electrical engineering Gain gain boosting maximum achievable gain (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G max) mm-wave Periodic structures Power demand terahertz (THz) Transistors |
title | Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A46%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20High-Gain%20Sub-THz%20Regenerative%20Amplifiers%20Based%20on%20Double-Gmax%20Gain%20Boosting%20Technique&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Park,%20Dae-Woong&rft.date=2021-11&rft.volume=56&rft.issue=11&rft.spage=3388&rft.epage=3398&rft.pages=3388-3398&rft.issn=0018-9200&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2021.3092168&rft_dat=%3Cieee_RIE%3E9474919%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9474919&rfr_iscdi=true |