P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection From Point Clouds
The most recent 3D object detectors for point clouds rely on the coarse voxel-based representation rather than the accurate point-based representation due to a higher box recall in the voxel-based Region Proposal Network (RPN). However, the detection accuracy is severely restricted by the informatio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.98249-98260 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98260 |
---|---|
container_issue | |
container_start_page | 98249 |
container_title | IEEE access |
container_volume | 9 |
creator | Li, Jiale Sun, Yu Luo, Shujie Zhu, Ziqi Dai, Hang Krylov, Andrey S. Ding, Yong Shao, Ling |
description | The most recent 3D object detectors for point clouds rely on the coarse voxel-based representation rather than the accurate point-based representation due to a higher box recall in the voxel-based Region Proposal Network (RPN). However, the detection accuracy is severely restricted by the information loss of pose details in the voxels. Different from considering the point cloud as voxel or point representation only, we propose a point-to-voxel feature learning approach to voxelize the point cloud with both the point-wise semantic and local spatial features, which maintains the voxel-wise features to build the high-recall voxel-based RPN and also provides the accurate point-wise features for refining the detection results. Another difficulty in object detection for point cloud is that the visible part varies a lot against the full view of object because of the perspective issues in data acquisition. To address this, we propose an attentive corner aggregation module to attentively aggregate the features of local point cloud surrounding a 3D proposal from the perspectives of eight corners in the proposal 3D bounding box. The experimental results on the competitive KITTI 3D object detection benchmark show that the proposed method achieves state-of-the-art performance. |
doi_str_mv | 10.1109/ACCESS.2021.3094562 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9474438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9474438</ieee_id><doaj_id>oai_doaj_org_article_1b95fafd01cc4cb58b405165a5358540</doaj_id><sourcerecordid>2552159963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9e149c83da020cfecc8822ed6a069e44b3fce6dc8e7c53fd6296c71237e3d5ff3</originalsourceid><addsrcrecordid>eNpNUU1Lw0AUDKKgqL_Ay4Ln1P3OrjdJWxVKK1a9LpvN25KQZusmBf33RlOK7zKPYWbeg0mSG4InhGB995Dns_V6QjElE4Y1F5KeJBeUSJ0yweTpv_08ue66Gg-jBkpkF8n6hX6kr_lyeY9eQtX2qA_oI3xBg-Zg-30EtAAb26rdIB8iYlO0KmpwPZpCP0AVWjSPYXsw503Yl91VcuZt08H1AS-T9_nsLX9KF6vH5_xhkTqOVZ9qIFw7xUqLKXYenFOKUiilxVID5wXzDmTpFGROMF9KqqXLCGUZsFJ4zy6T5zG3DLY2u1htbfw2wVbmjwhxY2zsK9eAIYUW3voSE-e4K4QqOBZECiuYUILjIet2zNrF8LmHrjd12Md2eN9QISgRWks2qNiocjF0XQR_vEqw-S3DjGWY3zLMoYzBdTO6KgA4OjTPOGeK_QCS_IM_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552159963</pqid></control><display><type>article</type><title>P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection From Point Clouds</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Jiale ; Sun, Yu ; Luo, Shujie ; Zhu, Ziqi ; Dai, Hang ; Krylov, Andrey S. ; Ding, Yong ; Shao, Ling</creator><creatorcontrib>Li, Jiale ; Sun, Yu ; Luo, Shujie ; Zhu, Ziqi ; Dai, Hang ; Krylov, Andrey S. ; Ding, Yong ; Shao, Ling</creatorcontrib><description>The most recent 3D object detectors for point clouds rely on the coarse voxel-based representation rather than the accurate point-based representation due to a higher box recall in the voxel-based Region Proposal Network (RPN). However, the detection accuracy is severely restricted by the information loss of pose details in the voxels. Different from considering the point cloud as voxel or point representation only, we propose a point-to-voxel feature learning approach to voxelize the point cloud with both the point-wise semantic and local spatial features, which maintains the voxel-wise features to build the high-recall voxel-based RPN and also provides the accurate point-wise features for refining the detection results. Another difficulty in object detection for point cloud is that the visible part varies a lot against the full view of object because of the perspective issues in data acquisition. To address this, we propose an attentive corner aggregation module to attentively aggregate the features of local point cloud surrounding a 3D proposal from the perspectives of eight corners in the proposal 3D bounding box. The experimental results on the competitive KITTI 3D object detection benchmark show that the proposed method achieves state-of-the-art performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3094562</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D object detection ; attention mechanism ; autonomous driving ; Cameras ; Feature extraction ; Learning ; Object detection ; Object recognition ; point clouds ; Proposals ; Recall ; Representations ; Semantics ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE access, 2021, Vol.9, p.98249-98260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9e149c83da020cfecc8822ed6a069e44b3fce6dc8e7c53fd6296c71237e3d5ff3</citedby><cites>FETCH-LOGICAL-c408t-9e149c83da020cfecc8822ed6a069e44b3fce6dc8e7c53fd6296c71237e3d5ff3</cites><orcidid>0000-0002-8264-6117 ; 0000-0002-3299-5386 ; 0000-0001-9910-4501 ; 0000-0002-5226-7511 ; 0000-0002-4335-5827 ; 0000-0002-0004-2863 ; 0000-0002-7609-0124 ; 0000-0003-0679-4166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9474438$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Li, Jiale</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Luo, Shujie</creatorcontrib><creatorcontrib>Zhu, Ziqi</creatorcontrib><creatorcontrib>Dai, Hang</creatorcontrib><creatorcontrib>Krylov, Andrey S.</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><title>P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection From Point Clouds</title><title>IEEE access</title><addtitle>Access</addtitle><description>The most recent 3D object detectors for point clouds rely on the coarse voxel-based representation rather than the accurate point-based representation due to a higher box recall in the voxel-based Region Proposal Network (RPN). However, the detection accuracy is severely restricted by the information loss of pose details in the voxels. Different from considering the point cloud as voxel or point representation only, we propose a point-to-voxel feature learning approach to voxelize the point cloud with both the point-wise semantic and local spatial features, which maintains the voxel-wise features to build the high-recall voxel-based RPN and also provides the accurate point-wise features for refining the detection results. Another difficulty in object detection for point cloud is that the visible part varies a lot against the full view of object because of the perspective issues in data acquisition. To address this, we propose an attentive corner aggregation module to attentively aggregate the features of local point cloud surrounding a 3D proposal from the perspectives of eight corners in the proposal 3D bounding box. The experimental results on the competitive KITTI 3D object detection benchmark show that the proposed method achieves state-of-the-art performance.</description><subject>3D object detection</subject><subject>attention mechanism</subject><subject>autonomous driving</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>Learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>point clouds</subject><subject>Proposals</subject><subject>Recall</subject><subject>Representations</subject><subject>Semantics</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AUDKKgqL_Ay4Ln1P3OrjdJWxVKK1a9LpvN25KQZusmBf33RlOK7zKPYWbeg0mSG4InhGB995Dns_V6QjElE4Y1F5KeJBeUSJ0yweTpv_08ue66Gg-jBkpkF8n6hX6kr_lyeY9eQtX2qA_oI3xBg-Zg-30EtAAb26rdIB8iYlO0KmpwPZpCP0AVWjSPYXsw503Yl91VcuZt08H1AS-T9_nsLX9KF6vH5_xhkTqOVZ9qIFw7xUqLKXYenFOKUiilxVID5wXzDmTpFGROMF9KqqXLCGUZsFJ4zy6T5zG3DLY2u1htbfw2wVbmjwhxY2zsK9eAIYUW3voSE-e4K4QqOBZECiuYUILjIet2zNrF8LmHrjd12Md2eN9QISgRWks2qNiocjF0XQR_vEqw-S3DjGWY3zLMoYzBdTO6KgA4OjTPOGeK_QCS_IM_</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Jiale</creator><creator>Sun, Yu</creator><creator>Luo, Shujie</creator><creator>Zhu, Ziqi</creator><creator>Dai, Hang</creator><creator>Krylov, Andrey S.</creator><creator>Ding, Yong</creator><creator>Shao, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-3299-5386</orcidid><orcidid>https://orcid.org/0000-0001-9910-4501</orcidid><orcidid>https://orcid.org/0000-0002-5226-7511</orcidid><orcidid>https://orcid.org/0000-0002-4335-5827</orcidid><orcidid>https://orcid.org/0000-0002-0004-2863</orcidid><orcidid>https://orcid.org/0000-0002-7609-0124</orcidid><orcidid>https://orcid.org/0000-0003-0679-4166</orcidid></search><sort><creationdate>2021</creationdate><title>P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection From Point Clouds</title><author>Li, Jiale ; Sun, Yu ; Luo, Shujie ; Zhu, Ziqi ; Dai, Hang ; Krylov, Andrey S. ; Ding, Yong ; Shao, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9e149c83da020cfecc8822ed6a069e44b3fce6dc8e7c53fd6296c71237e3d5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D object detection</topic><topic>attention mechanism</topic><topic>autonomous driving</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>Learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>point clouds</topic><topic>Proposals</topic><topic>Recall</topic><topic>Representations</topic><topic>Semantics</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiale</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Luo, Shujie</creatorcontrib><creatorcontrib>Zhu, Ziqi</creatorcontrib><creatorcontrib>Dai, Hang</creatorcontrib><creatorcontrib>Krylov, Andrey S.</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiale</au><au>Sun, Yu</au><au>Luo, Shujie</au><au>Zhu, Ziqi</au><au>Dai, Hang</au><au>Krylov, Andrey S.</au><au>Ding, Yong</au><au>Shao, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection From Point Clouds</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>98249</spage><epage>98260</epage><pages>98249-98260</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The most recent 3D object detectors for point clouds rely on the coarse voxel-based representation rather than the accurate point-based representation due to a higher box recall in the voxel-based Region Proposal Network (RPN). However, the detection accuracy is severely restricted by the information loss of pose details in the voxels. Different from considering the point cloud as voxel or point representation only, we propose a point-to-voxel feature learning approach to voxelize the point cloud with both the point-wise semantic and local spatial features, which maintains the voxel-wise features to build the high-recall voxel-based RPN and also provides the accurate point-wise features for refining the detection results. Another difficulty in object detection for point cloud is that the visible part varies a lot against the full view of object because of the perspective issues in data acquisition. To address this, we propose an attentive corner aggregation module to attentively aggregate the features of local point cloud surrounding a 3D proposal from the perspectives of eight corners in the proposal 3D bounding box. The experimental results on the competitive KITTI 3D object detection benchmark show that the proposed method achieves state-of-the-art performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3094562</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0002-3299-5386</orcidid><orcidid>https://orcid.org/0000-0001-9910-4501</orcidid><orcidid>https://orcid.org/0000-0002-5226-7511</orcidid><orcidid>https://orcid.org/0000-0002-4335-5827</orcidid><orcidid>https://orcid.org/0000-0002-0004-2863</orcidid><orcidid>https://orcid.org/0000-0002-7609-0124</orcidid><orcidid>https://orcid.org/0000-0003-0679-4166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.98249-98260 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9474438 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 3D object detection attention mechanism autonomous driving Cameras Feature extraction Learning Object detection Object recognition point clouds Proposals Recall Representations Semantics Three dimensional models Three-dimensional displays |
title | P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection From Point Clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P2V-RCNN:%20Point%20to%20Voxel%20Feature%20Learning%20for%203D%20Object%20Detection%20From%20Point%20Clouds&rft.jtitle=IEEE%20access&rft.au=Li,%20Jiale&rft.date=2021&rft.volume=9&rft.spage=98249&rft.epage=98260&rft.pages=98249-98260&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3094562&rft_dat=%3Cproquest_ieee_%3E2552159963%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552159963&rft_id=info:pmid/&rft_ieee_id=9474438&rft_doaj_id=oai_doaj_org_article_1b95fafd01cc4cb58b405165a5358540&rfr_iscdi=true |