Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations

C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-10, Vol.6 (4), p.6442-6449
Hauptverfasser: Hagenow, Michael, Senft, Emmanuel, Radwin, Robert, Gleicher, Michael, Mutlu, Bilge, Zinn, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6449
container_issue 4
container_start_page 6442
container_title IEEE robotics and automation letters
container_volume 6
creator Hagenow, Michael
Senft, Emmanuel
Radwin, Robert
Gleicher, Michael
Mutlu, Bilge
Zinn, Michael
description C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.
doi_str_mv 10.1109/LRA.2021.3094480
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9472948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9472948</ieee_id><sourcerecordid>2553590741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</originalsourceid><addsrcrecordid>eNpNkEFLwzAUgIMoOObugpeA586XpG2a45hTBwNhzpOHkLYvW8fazKQV9-_t3BBPeYHvew8-Qm4ZjBkD9bBYTsYcOBsLUHGcwQUZcCFlJGSaXv6br8kohC0AsIRLoZIB-Zg31vm6atZ0iWYXraoa6dR5j0VbuSbQqvn7fiF92xiPJZ10rWtcfaCrjXfdekNn33v0LX3Eundab37dG3JlzS7g6PwOyfvTbDV9iRavz_PpZBEVXLE2UlLyIrPcQpYjqNwoZJZnLANhRcpKyPO8TEXJuUoQTZEwUYCMGVM8zSQDMST3p7177z47DK3eus43_UnNk0Qk6kj3FJyowrsQPFq991Vt_EEz0MeKuq-ojxX1uWKv3J2UChH_cBVLruJM_ADSv211</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553590741</pqid></control><display><type>article</type><title>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</title><source>IEEE Electronic Library (IEL)</source><creator>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creator><creatorcontrib>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creatorcontrib><description>C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3094480</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomy ; Cleaning ; Force ; Human-Robot Collaboration ; Learning from Demonstration ; Real-time systems ; Robot kinematics ; Robots ; Surface cleaning ; Task analysis ; Telerobotics and Teleoperation ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6442-6449</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</citedby><cites>FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</cites><orcidid>0000-0002-9456-1495 ; 0000-0002-6815-5899 ; 0000-0002-4532-2949 ; 0000-0002-7973-0641 ; 0000-0003-3295-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9472948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9472948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><title>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.</description><subject>Autonomy</subject><subject>Cleaning</subject><subject>Force</subject><subject>Human-Robot Collaboration</subject><subject>Learning from Demonstration</subject><subject>Real-time systems</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Surface cleaning</subject><subject>Task analysis</subject><subject>Telerobotics and Teleoperation</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUgIMoOObugpeA586XpG2a45hTBwNhzpOHkLYvW8fazKQV9-_t3BBPeYHvew8-Qm4ZjBkD9bBYTsYcOBsLUHGcwQUZcCFlJGSaXv6br8kohC0AsIRLoZIB-Zg31vm6atZ0iWYXraoa6dR5j0VbuSbQqvn7fiF92xiPJZ10rWtcfaCrjXfdekNn33v0LX3Eundab37dG3JlzS7g6PwOyfvTbDV9iRavz_PpZBEVXLE2UlLyIrPcQpYjqNwoZJZnLANhRcpKyPO8TEXJuUoQTZEwUYCMGVM8zSQDMST3p7177z47DK3eus43_UnNk0Qk6kj3FJyowrsQPFq991Vt_EEz0MeKuq-ojxX1uWKv3J2UChH_cBVLruJM_ADSv211</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hagenow, Michael</creator><creator>Senft, Emmanuel</creator><creator>Radwin, Robert</creator><creator>Gleicher, Michael</creator><creator>Mutlu, Bilge</creator><creator>Zinn, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid></search><sort><creationdate>20211001</creationdate><title>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</title><author>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autonomy</topic><topic>Cleaning</topic><topic>Force</topic><topic>Human-Robot Collaboration</topic><topic>Learning from Demonstration</topic><topic>Real-time systems</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Surface cleaning</topic><topic>Task analysis</topic><topic>Telerobotics and Teleoperation</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagenow, Michael</au><au>Senft, Emmanuel</au><au>Radwin, Robert</au><au>Gleicher, Michael</au><au>Mutlu, Bilge</au><au>Zinn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>6442</spage><epage>6449</epage><pages>6442-6449</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3094480</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6442-6449
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9472948
source IEEE Electronic Library (IEL)
subjects Autonomy
Cleaning
Force
Human-Robot Collaboration
Learning from Demonstration
Real-time systems
Robot kinematics
Robots
Surface cleaning
Task analysis
Telerobotics and Teleoperation
Trajectory
title Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informing%20Real-Time%20Corrections%20in%20Corrective%20Shared%20Autonomy%20Through%20Expert%20Demonstrations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hagenow,%20Michael&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=6442&rft.epage=6449&rft.pages=6442-6449&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3094480&rft_dat=%3Cproquest_RIE%3E2553590741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553590741&rft_id=info:pmid/&rft_ieee_id=9472948&rfr_iscdi=true