Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations
C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, appl...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-10, Vol.6 (4), p.6442-6449 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6449 |
---|---|
container_issue | 4 |
container_start_page | 6442 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Hagenow, Michael Senft, Emmanuel Radwin, Robert Gleicher, Michael Mutlu, Bilge Zinn, Michael |
description | C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution. |
doi_str_mv | 10.1109/LRA.2021.3094480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9472948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9472948</ieee_id><sourcerecordid>2553590741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</originalsourceid><addsrcrecordid>eNpNkEFLwzAUgIMoOObugpeA586XpG2a45hTBwNhzpOHkLYvW8fazKQV9-_t3BBPeYHvew8-Qm4ZjBkD9bBYTsYcOBsLUHGcwQUZcCFlJGSaXv6br8kohC0AsIRLoZIB-Zg31vm6atZ0iWYXraoa6dR5j0VbuSbQqvn7fiF92xiPJZ10rWtcfaCrjXfdekNn33v0LX3Eundab37dG3JlzS7g6PwOyfvTbDV9iRavz_PpZBEVXLE2UlLyIrPcQpYjqNwoZJZnLANhRcpKyPO8TEXJuUoQTZEwUYCMGVM8zSQDMST3p7177z47DK3eus43_UnNk0Qk6kj3FJyowrsQPFq991Vt_EEz0MeKuq-ojxX1uWKv3J2UChH_cBVLruJM_ADSv211</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553590741</pqid></control><display><type>article</type><title>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</title><source>IEEE Electronic Library (IEL)</source><creator>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creator><creatorcontrib>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</creatorcontrib><description>C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3094480</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomy ; Cleaning ; Force ; Human-Robot Collaboration ; Learning from Demonstration ; Real-time systems ; Robot kinematics ; Robots ; Surface cleaning ; Task analysis ; Telerobotics and Teleoperation ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6442-6449</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</citedby><cites>FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</cites><orcidid>0000-0002-9456-1495 ; 0000-0002-6815-5899 ; 0000-0002-4532-2949 ; 0000-0002-7973-0641 ; 0000-0003-3295-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9472948$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9472948$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><title>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.</description><subject>Autonomy</subject><subject>Cleaning</subject><subject>Force</subject><subject>Human-Robot Collaboration</subject><subject>Learning from Demonstration</subject><subject>Real-time systems</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Surface cleaning</subject><subject>Task analysis</subject><subject>Telerobotics and Teleoperation</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAUgIMoOObugpeA586XpG2a45hTBwNhzpOHkLYvW8fazKQV9-_t3BBPeYHvew8-Qm4ZjBkD9bBYTsYcOBsLUHGcwQUZcCFlJGSaXv6br8kohC0AsIRLoZIB-Zg31vm6atZ0iWYXraoa6dR5j0VbuSbQqvn7fiF92xiPJZ10rWtcfaCrjXfdekNn33v0LX3Eundab37dG3JlzS7g6PwOyfvTbDV9iRavz_PpZBEVXLE2UlLyIrPcQpYjqNwoZJZnLANhRcpKyPO8TEXJuUoQTZEwUYCMGVM8zSQDMST3p7177z47DK3eus43_UnNk0Qk6kj3FJyowrsQPFq991Vt_EEz0MeKuq-ojxX1uWKv3J2UChH_cBVLruJM_ADSv211</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hagenow, Michael</creator><creator>Senft, Emmanuel</creator><creator>Radwin, Robert</creator><creator>Gleicher, Michael</creator><creator>Mutlu, Bilge</creator><creator>Zinn, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid></search><sort><creationdate>20211001</creationdate><title>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</title><author>Hagenow, Michael ; Senft, Emmanuel ; Radwin, Robert ; Gleicher, Michael ; Mutlu, Bilge ; Zinn, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9772c8f2f08be09ba9e1f281803f361d0bbbd63d2295eeac513c0741192687103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autonomy</topic><topic>Cleaning</topic><topic>Force</topic><topic>Human-Robot Collaboration</topic><topic>Learning from Demonstration</topic><topic>Real-time systems</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Surface cleaning</topic><topic>Task analysis</topic><topic>Telerobotics and Teleoperation</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagenow, Michael</creatorcontrib><creatorcontrib>Senft, Emmanuel</creatorcontrib><creatorcontrib>Radwin, Robert</creatorcontrib><creatorcontrib>Gleicher, Michael</creatorcontrib><creatorcontrib>Mutlu, Bilge</creatorcontrib><creatorcontrib>Zinn, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagenow, Michael</au><au>Senft, Emmanuel</au><au>Radwin, Robert</au><au>Gleicher, Michael</au><au>Mutlu, Bilge</au><au>Zinn, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>6442</spage><epage>6449</epage><pages>6442-6449</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>C orrective Shared Autonomy is a method where human corrections are layered on top of an otherwise autonomous robot behavior. Specifically, a Corrective Shared Autonomy system leverages an external controller to allow corrections across a range of task variables (e.g., spinning speed of a tool, applied force, path) to address the specific needs of a task. However, this inherent flexibility makes the choice of what corrections to allow at any given instant difficult to determine. This choice of corrections includes determining appropriate robot state variables, scaling for these variables, and a way to allow a user to specify the corrections in an intuitive manner. This letter enables efficient Corrective Shared Autonomy by providing an automated solution based on Learning from Demonstration to both extract the nominal behavior and address these core problems. Our evaluation shows that this solution enables users to successfully complete a surface cleaning task, identifies different strategies users employed in applying corrections, and points to future improvements for our solution.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3094480</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9456-1495</orcidid><orcidid>https://orcid.org/0000-0002-6815-5899</orcidid><orcidid>https://orcid.org/0000-0002-4532-2949</orcidid><orcidid>https://orcid.org/0000-0002-7973-0641</orcidid><orcidid>https://orcid.org/0000-0003-3295-4071</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6442-6449 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9472948 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomy Cleaning Force Human-Robot Collaboration Learning from Demonstration Real-time systems Robot kinematics Robots Surface cleaning Task analysis Telerobotics and Teleoperation Trajectory |
title | Informing Real-Time Corrections in Corrective Shared Autonomy Through Expert Demonstrations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informing%20Real-Time%20Corrections%20in%20Corrective%20Shared%20Autonomy%20Through%20Expert%20Demonstrations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hagenow,%20Michael&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=6442&rft.epage=6449&rft.pages=6442-6449&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3094480&rft_dat=%3Cproquest_RIE%3E2553590741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553590741&rft_id=info:pmid/&rft_ieee_id=9472948&rfr_iscdi=true |