A comparison of trajectory compression algorithms over AIS data

Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Makris, Antonios, Kontopoulos, Ioannis, Alimisis, Panagiotis, Tserpes, Konstantinos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Makris, Antonios
Kontopoulos, Ioannis
Alimisis, Panagiotis
Tserpes, Konstantinos
description Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance.
doi_str_mv 10.1109/ACCESS.2021.3092948
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9466112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9466112</ieee_id><doaj_id>oai_doaj_org_article_eea94e013e594cf48eab14ff9f5659cc</doaj_id><sourcerecordid>2547641750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</originalsourceid><addsrcrecordid>eNpNUE1rwkAQXUoLFesv8BLoOXY_k-ypBLGtIPRge14mm1mboK7djQX_faOR0rnM8N68N8MjZMrojDGqn8r5fLFezzjlbCao5loWN2TEWaZToUR2-2--J5MYW9pX0UMqH5HnMrF-d4DQRL9PvEu6AC3azofThQgYY9MzsN340HRfu5j4HwxJuVwnNXTwQO4cbCNOrn1MPl8WH_O3dPX-upyXq9RKWnRpAZw5pmxtOdXINHcVd65wDETuQFYVhVxRLqXSDuq8UFIUCnmlpa7rTFoxJsvBt_bQmkNodhBOxkNjLoAPGwOha-wWDSJoiZQJVFpaJwuEiknntFOZ0vbs9Th4HYL_PmLsTOuPYd-_b7iSeSZZ_0u_JYYtG3yMAd3fVUbNOXgzBG_OwZtr8L1qOqgaRPxTaJlljHHxC_1Ifno</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547641750</pqid></control><display><type>article</type><title>A comparison of trajectory compression algorithms over AIS data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Makris, Antonios ; Kontopoulos, Ioannis ; Alimisis, Panagiotis ; Tserpes, Konstantinos</creator><creatorcontrib>Makris, Antonios ; Kontopoulos, Ioannis ; Alimisis, Panagiotis ; Tserpes, Konstantinos</creatorcontrib><description>Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3092948</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Clustering algorithms ; Compression algorithms ; Compression ratio ; Compression tests ; Data compression ; Data transmission ; Dead reckoning ; Error metrics ; Heuristic algorithms ; Kinematics ; Loss measurement ; lossy compression techniques ; Performance evaluation ; Shape ; similarity measures ; simplifying trajectory algorithms ; Tracking ; Trajectory ; Trajectory analysis ; trajectory compression algorithm ; trajectory similarity</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</citedby><cites>FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</cites><orcidid>0000-0001-5183-1443 ; 0000-0003-0514-4292 ; 0000-0003-2353-4438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9466112$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Makris, Antonios</creatorcontrib><creatorcontrib>Kontopoulos, Ioannis</creatorcontrib><creatorcontrib>Alimisis, Panagiotis</creatorcontrib><creatorcontrib>Tserpes, Konstantinos</creatorcontrib><title>A comparison of trajectory compression algorithms over AIS data</title><title>IEEE access</title><addtitle>Access</addtitle><description>Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clustering algorithms</subject><subject>Compression algorithms</subject><subject>Compression ratio</subject><subject>Compression tests</subject><subject>Data compression</subject><subject>Data transmission</subject><subject>Dead reckoning</subject><subject>Error metrics</subject><subject>Heuristic algorithms</subject><subject>Kinematics</subject><subject>Loss measurement</subject><subject>lossy compression techniques</subject><subject>Performance evaluation</subject><subject>Shape</subject><subject>similarity measures</subject><subject>simplifying trajectory algorithms</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>trajectory compression algorithm</subject><subject>trajectory similarity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQXUoLFesv8BLoOXY_k-ypBLGtIPRge14mm1mboK7djQX_faOR0rnM8N68N8MjZMrojDGqn8r5fLFezzjlbCao5loWN2TEWaZToUR2-2--J5MYW9pX0UMqH5HnMrF-d4DQRL9PvEu6AC3azofThQgYY9MzsN340HRfu5j4HwxJuVwnNXTwQO4cbCNOrn1MPl8WH_O3dPX-upyXq9RKWnRpAZw5pmxtOdXINHcVd65wDETuQFYVhVxRLqXSDuq8UFIUCnmlpa7rTFoxJsvBt_bQmkNodhBOxkNjLoAPGwOha-wWDSJoiZQJVFpaJwuEiknntFOZ0vbs9Th4HYL_PmLsTOuPYd-_b7iSeSZZ_0u_JYYtG3yMAd3fVUbNOXgzBG_OwZtr8L1qOqgaRPxTaJlljHHxC_1Ifno</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Makris, Antonios</creator><creator>Kontopoulos, Ioannis</creator><creator>Alimisis, Panagiotis</creator><creator>Tserpes, Konstantinos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5183-1443</orcidid><orcidid>https://orcid.org/0000-0003-0514-4292</orcidid><orcidid>https://orcid.org/0000-0003-2353-4438</orcidid></search><sort><creationdate>20210101</creationdate><title>A comparison of trajectory compression algorithms over AIS data</title><author>Makris, Antonios ; Kontopoulos, Ioannis ; Alimisis, Panagiotis ; Tserpes, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clustering algorithms</topic><topic>Compression algorithms</topic><topic>Compression ratio</topic><topic>Compression tests</topic><topic>Data compression</topic><topic>Data transmission</topic><topic>Dead reckoning</topic><topic>Error metrics</topic><topic>Heuristic algorithms</topic><topic>Kinematics</topic><topic>Loss measurement</topic><topic>lossy compression techniques</topic><topic>Performance evaluation</topic><topic>Shape</topic><topic>similarity measures</topic><topic>simplifying trajectory algorithms</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>trajectory compression algorithm</topic><topic>trajectory similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makris, Antonios</creatorcontrib><creatorcontrib>Kontopoulos, Ioannis</creatorcontrib><creatorcontrib>Alimisis, Panagiotis</creatorcontrib><creatorcontrib>Tserpes, Konstantinos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makris, Antonios</au><au>Kontopoulos, Ioannis</au><au>Alimisis, Panagiotis</au><au>Tserpes, Konstantinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of trajectory compression algorithms over AIS data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3092948</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5183-1443</orcidid><orcidid>https://orcid.org/0000-0003-0514-4292</orcidid><orcidid>https://orcid.org/0000-0003-2353-4438</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9466112
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Clustering algorithms
Compression algorithms
Compression ratio
Compression tests
Data compression
Data transmission
Dead reckoning
Error metrics
Heuristic algorithms
Kinematics
Loss measurement
lossy compression techniques
Performance evaluation
Shape
similarity measures
simplifying trajectory algorithms
Tracking
Trajectory
Trajectory analysis
trajectory compression algorithm
trajectory similarity
title A comparison of trajectory compression algorithms over AIS data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20trajectory%20compression%20algorithms%20over%20AIS%20data&rft.jtitle=IEEE%20access&rft.au=Makris,%20Antonios&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3092948&rft_dat=%3Cproquest_ieee_%3E2547641750%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547641750&rft_id=info:pmid/&rft_ieee_id=9466112&rft_doaj_id=oai_doaj_org_article_eea94e013e594cf48eab14ff9f5659cc&rfr_iscdi=true