A comparison of trajectory compression algorithms over AIS data
Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 9 |
creator | Makris, Antonios Kontopoulos, Ioannis Alimisis, Panagiotis Tserpes, Konstantinos |
description | Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance. |
doi_str_mv | 10.1109/ACCESS.2021.3092948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9466112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9466112</ieee_id><doaj_id>oai_doaj_org_article_eea94e013e594cf48eab14ff9f5659cc</doaj_id><sourcerecordid>2547641750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</originalsourceid><addsrcrecordid>eNpNUE1rwkAQXUoLFesv8BLoOXY_k-ypBLGtIPRge14mm1mboK7djQX_faOR0rnM8N68N8MjZMrojDGqn8r5fLFezzjlbCao5loWN2TEWaZToUR2-2--J5MYW9pX0UMqH5HnMrF-d4DQRL9PvEu6AC3azofThQgYY9MzsN340HRfu5j4HwxJuVwnNXTwQO4cbCNOrn1MPl8WH_O3dPX-upyXq9RKWnRpAZw5pmxtOdXINHcVd65wDETuQFYVhVxRLqXSDuq8UFIUCnmlpa7rTFoxJsvBt_bQmkNodhBOxkNjLoAPGwOha-wWDSJoiZQJVFpaJwuEiknntFOZ0vbs9Th4HYL_PmLsTOuPYd-_b7iSeSZZ_0u_JYYtG3yMAd3fVUbNOXgzBG_OwZtr8L1qOqgaRPxTaJlljHHxC_1Ifno</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547641750</pqid></control><display><type>article</type><title>A comparison of trajectory compression algorithms over AIS data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Makris, Antonios ; Kontopoulos, Ioannis ; Alimisis, Panagiotis ; Tserpes, Konstantinos</creator><creatorcontrib>Makris, Antonios ; Kontopoulos, Ioannis ; Alimisis, Panagiotis ; Tserpes, Konstantinos</creatorcontrib><description>Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3092948</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Clustering algorithms ; Compression algorithms ; Compression ratio ; Compression tests ; Data compression ; Data transmission ; Dead reckoning ; Error metrics ; Heuristic algorithms ; Kinematics ; Loss measurement ; lossy compression techniques ; Performance evaluation ; Shape ; similarity measures ; simplifying trajectory algorithms ; Tracking ; Trajectory ; Trajectory analysis ; trajectory compression algorithm ; trajectory similarity</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</citedby><cites>FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</cites><orcidid>0000-0001-5183-1443 ; 0000-0003-0514-4292 ; 0000-0003-2353-4438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9466112$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Makris, Antonios</creatorcontrib><creatorcontrib>Kontopoulos, Ioannis</creatorcontrib><creatorcontrib>Alimisis, Panagiotis</creatorcontrib><creatorcontrib>Tserpes, Konstantinos</creatorcontrib><title>A comparison of trajectory compression algorithms over AIS data</title><title>IEEE access</title><addtitle>Access</addtitle><description>Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clustering algorithms</subject><subject>Compression algorithms</subject><subject>Compression ratio</subject><subject>Compression tests</subject><subject>Data compression</subject><subject>Data transmission</subject><subject>Dead reckoning</subject><subject>Error metrics</subject><subject>Heuristic algorithms</subject><subject>Kinematics</subject><subject>Loss measurement</subject><subject>lossy compression techniques</subject><subject>Performance evaluation</subject><subject>Shape</subject><subject>similarity measures</subject><subject>simplifying trajectory algorithms</subject><subject>Tracking</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><subject>trajectory compression algorithm</subject><subject>trajectory similarity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQXUoLFesv8BLoOXY_k-ypBLGtIPRge14mm1mboK7djQX_faOR0rnM8N68N8MjZMrojDGqn8r5fLFezzjlbCao5loWN2TEWaZToUR2-2--J5MYW9pX0UMqH5HnMrF-d4DQRL9PvEu6AC3azofThQgYY9MzsN340HRfu5j4HwxJuVwnNXTwQO4cbCNOrn1MPl8WH_O3dPX-upyXq9RKWnRpAZw5pmxtOdXINHcVd65wDETuQFYVhVxRLqXSDuq8UFIUCnmlpa7rTFoxJsvBt_bQmkNodhBOxkNjLoAPGwOha-wWDSJoiZQJVFpaJwuEiknntFOZ0vbs9Th4HYL_PmLsTOuPYd-_b7iSeSZZ_0u_JYYtG3yMAd3fVUbNOXgzBG_OwZtr8L1qOqgaRPxTaJlljHHxC_1Ifno</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Makris, Antonios</creator><creator>Kontopoulos, Ioannis</creator><creator>Alimisis, Panagiotis</creator><creator>Tserpes, Konstantinos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5183-1443</orcidid><orcidid>https://orcid.org/0000-0003-0514-4292</orcidid><orcidid>https://orcid.org/0000-0003-2353-4438</orcidid></search><sort><creationdate>20210101</creationdate><title>A comparison of trajectory compression algorithms over AIS data</title><author>Makris, Antonios ; Kontopoulos, Ioannis ; Alimisis, Panagiotis ; Tserpes, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a21f15cdc209e192fb2ff8f1a37fa4bb0a75024459fad7854385e2b949dd64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clustering algorithms</topic><topic>Compression algorithms</topic><topic>Compression ratio</topic><topic>Compression tests</topic><topic>Data compression</topic><topic>Data transmission</topic><topic>Dead reckoning</topic><topic>Error metrics</topic><topic>Heuristic algorithms</topic><topic>Kinematics</topic><topic>Loss measurement</topic><topic>lossy compression techniques</topic><topic>Performance evaluation</topic><topic>Shape</topic><topic>similarity measures</topic><topic>simplifying trajectory algorithms</topic><topic>Tracking</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><topic>trajectory compression algorithm</topic><topic>trajectory similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makris, Antonios</creatorcontrib><creatorcontrib>Kontopoulos, Ioannis</creatorcontrib><creatorcontrib>Alimisis, Panagiotis</creatorcontrib><creatorcontrib>Tserpes, Konstantinos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makris, Antonios</au><au>Kontopoulos, Ioannis</au><au>Alimisis, Panagiotis</au><au>Tserpes, Konstantinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of trajectory compression algorithms over AIS data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Today's industry is flooded with tracking data originating from vessels across the globe that transmit their position at frequent intervals. These voluminous and high-speed streams of data has led researchers to develop novel ways to compress them in order to speed-up processing without losing valuable information. To this end, several algorithms have been developed that try to compress streams of vessel tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present a wide range of several well-known trajectory compression algorithms and evaluate their performance on data originating from vessel trajectories. Trajectory compression algorithms included in this research are suitable for either historical data (offline compression) or real-time data streams (online compression). The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio, execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally, considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance, but it also works over streaming data, which constitutes an important criterion in maritime surveillance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3092948</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5183-1443</orcidid><orcidid>https://orcid.org/0000-0003-0514-4292</orcidid><orcidid>https://orcid.org/0000-0003-2353-4438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9466112 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Clustering algorithms Compression algorithms Compression ratio Compression tests Data compression Data transmission Dead reckoning Error metrics Heuristic algorithms Kinematics Loss measurement lossy compression techniques Performance evaluation Shape similarity measures simplifying trajectory algorithms Tracking Trajectory Trajectory analysis trajectory compression algorithm trajectory similarity |
title | A comparison of trajectory compression algorithms over AIS data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20trajectory%20compression%20algorithms%20over%20AIS%20data&rft.jtitle=IEEE%20access&rft.au=Makris,%20Antonios&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3092948&rft_dat=%3Cproquest_ieee_%3E2547641750%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547641750&rft_id=info:pmid/&rft_ieee_id=9466112&rft_doaj_id=oai_doaj_org_article_eea94e013e594cf48eab14ff9f5659cc&rfr_iscdi=true |