LMI Framework for Set Reachability Inclusion in Discrete-Time LTI Systems

In this article, we present a convex optimization framework to verify the reachability of a desired set for discrete-time linear time-invariant systems. Given elliptically bounded inputs, the set of reachable states in N time steps is the Minkowski sum of a finite number of ellipsoids. We formulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2022-06, Vol.67 (6), p.2997-3004
Hauptverfasser: Hadizadeh Kafash, Sahand, Ruths, Jusin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3004
container_issue 6
container_start_page 2997
container_title IEEE transactions on automatic control
container_volume 67
creator Hadizadeh Kafash, Sahand
Ruths, Jusin
description In this article, we present a convex optimization framework to verify the reachability of a desired set for discrete-time linear time-invariant systems. Given elliptically bounded inputs, the set of reachable states in N time steps is the Minkowski sum of a finite number of ellipsoids. We formulate the inclusion verification problem as a chain of constraints in the form of linear matrix inequalities. As the time horizon grows, the number of constraints becomes unwieldy, and we present a technique to achieve a similar level of accuracy with far fewer terms, significantly reducing the computational cost of the method. Numerical examples presented in this article show that the method is highly adaptable.
doi_str_mv 10.1109/TAC.2021.3091412
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9464691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9464691</ieee_id><sourcerecordid>2670203334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2ec1aa95d89fb3a9473b7d1f1bd447b495aaf1329ab16a33dc7473d7414244b63</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8BnztzkzRtHsd0WqgIrj6HJE0xc21n0jH27-3Y8Oly4DvnwofQPZAZAJFP1Xwxo4TCjBEJHOgFmkCa5glNKbtEE0IgTyTNxTW6iXE9RsE5TFBRvhd4GXTr9n34wU0f8MoN-NNp-62N3_jhgIvObnbR9x32HX720QY3uKTyrcNlVeDVIQ6ujbfoqtGb6O7Od4q-li_V4i0pP16LxbxMLJUwJNRZ0FqmdS4bw7TkGTNZDQ2YmvPMcJlq3QCjUhsQmrHaZiNSZxw45dwINkWPp91t6H93Lg5q3e9CN75UVGSEEsYYHylyomzoYwyuUdvgWx0OCog6ClOjMHUUps7CxsrDqeKdc_-45IILCewPw3tk-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670203334</pqid></control><display><type>article</type><title>LMI Framework for Set Reachability Inclusion in Discrete-Time LTI Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hadizadeh Kafash, Sahand ; Ruths, Jusin</creator><creatorcontrib>Hadizadeh Kafash, Sahand ; Ruths, Jusin</creatorcontrib><description>In this article, we present a convex optimization framework to verify the reachability of a desired set for discrete-time linear time-invariant systems. Given elliptically bounded inputs, the set of reachable states in &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;N&lt;/tex-math&gt;&lt;/inline-formula&gt; time steps is the Minkowski sum of a finite number of ellipsoids. We formulate the inclusion verification problem as a chain of constraints in the form of linear matrix inequalities. As the time horizon grows, the number of constraints becomes unwieldy, and we present a technique to achieve a similar level of accuracy with far fewer terms, significantly reducing the computational cost of the method. Numerical examples presented in this article show that the method is highly adaptable.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3091412</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational geometry ; Convexity ; Discrete time systems ; Ellipsoidal approximation ; Ellipsoids ; Linear matrix inequalities ; linear matrix inequality (LMI) ; Linear systems ; linear time-invariant (LTI) systems ; Mathematical analysis ; Optimization ; reachable set ; Safety ; Shape ; System analysis and design ; Time invariant systems ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2022-06, Vol.67 (6), p.2997-3004</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2ec1aa95d89fb3a9473b7d1f1bd447b495aaf1329ab16a33dc7473d7414244b63</citedby><cites>FETCH-LOGICAL-c291t-2ec1aa95d89fb3a9473b7d1f1bd447b495aaf1329ab16a33dc7473d7414244b63</cites><orcidid>0000-0003-3594-0134 ; 0000-0002-9132-2229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9464691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9464691$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hadizadeh Kafash, Sahand</creatorcontrib><creatorcontrib>Ruths, Jusin</creatorcontrib><title>LMI Framework for Set Reachability Inclusion in Discrete-Time LTI Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this article, we present a convex optimization framework to verify the reachability of a desired set for discrete-time linear time-invariant systems. Given elliptically bounded inputs, the set of reachable states in &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;N&lt;/tex-math&gt;&lt;/inline-formula&gt; time steps is the Minkowski sum of a finite number of ellipsoids. We formulate the inclusion verification problem as a chain of constraints in the form of linear matrix inequalities. As the time horizon grows, the number of constraints becomes unwieldy, and we present a technique to achieve a similar level of accuracy with far fewer terms, significantly reducing the computational cost of the method. Numerical examples presented in this article show that the method is highly adaptable.</description><subject>Computational geometry</subject><subject>Convexity</subject><subject>Discrete time systems</subject><subject>Ellipsoidal approximation</subject><subject>Ellipsoids</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality (LMI)</subject><subject>Linear systems</subject><subject>linear time-invariant (LTI) systems</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>reachable set</subject><subject>Safety</subject><subject>Shape</subject><subject>System analysis and design</subject><subject>Time invariant systems</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKfvgi8BnztzkzRtHsd0WqgIrj6HJE0xc21n0jH27-3Y8Oly4DvnwofQPZAZAJFP1Xwxo4TCjBEJHOgFmkCa5glNKbtEE0IgTyTNxTW6iXE9RsE5TFBRvhd4GXTr9n34wU0f8MoN-NNp-62N3_jhgIvObnbR9x32HX720QY3uKTyrcNlVeDVIQ6ujbfoqtGb6O7Od4q-li_V4i0pP16LxbxMLJUwJNRZ0FqmdS4bw7TkGTNZDQ2YmvPMcJlq3QCjUhsQmrHaZiNSZxw45dwINkWPp91t6H93Lg5q3e9CN75UVGSEEsYYHylyomzoYwyuUdvgWx0OCog6ClOjMHUUps7CxsrDqeKdc_-45IILCewPw3tk-A</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hadizadeh Kafash, Sahand</creator><creator>Ruths, Jusin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3594-0134</orcidid><orcidid>https://orcid.org/0000-0002-9132-2229</orcidid></search><sort><creationdate>20220601</creationdate><title>LMI Framework for Set Reachability Inclusion in Discrete-Time LTI Systems</title><author>Hadizadeh Kafash, Sahand ; Ruths, Jusin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2ec1aa95d89fb3a9473b7d1f1bd447b495aaf1329ab16a33dc7473d7414244b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational geometry</topic><topic>Convexity</topic><topic>Discrete time systems</topic><topic>Ellipsoidal approximation</topic><topic>Ellipsoids</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality (LMI)</topic><topic>Linear systems</topic><topic>linear time-invariant (LTI) systems</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>reachable set</topic><topic>Safety</topic><topic>Shape</topic><topic>System analysis and design</topic><topic>Time invariant systems</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadizadeh Kafash, Sahand</creatorcontrib><creatorcontrib>Ruths, Jusin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hadizadeh Kafash, Sahand</au><au>Ruths, Jusin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI Framework for Set Reachability Inclusion in Discrete-Time LTI Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>67</volume><issue>6</issue><spage>2997</spage><epage>3004</epage><pages>2997-3004</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this article, we present a convex optimization framework to verify the reachability of a desired set for discrete-time linear time-invariant systems. Given elliptically bounded inputs, the set of reachable states in &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;N&lt;/tex-math&gt;&lt;/inline-formula&gt; time steps is the Minkowski sum of a finite number of ellipsoids. We formulate the inclusion verification problem as a chain of constraints in the form of linear matrix inequalities. As the time horizon grows, the number of constraints becomes unwieldy, and we present a technique to achieve a similar level of accuracy with far fewer terms, significantly reducing the computational cost of the method. Numerical examples presented in this article show that the method is highly adaptable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3091412</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3594-0134</orcidid><orcidid>https://orcid.org/0000-0002-9132-2229</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2022-06, Vol.67 (6), p.2997-3004
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_9464691
source IEEE Electronic Library (IEL)
subjects Computational geometry
Convexity
Discrete time systems
Ellipsoidal approximation
Ellipsoids
Linear matrix inequalities
linear matrix inequality (LMI)
Linear systems
linear time-invariant (LTI) systems
Mathematical analysis
Optimization
reachable set
Safety
Shape
System analysis and design
Time invariant systems
Trajectory
title LMI Framework for Set Reachability Inclusion in Discrete-Time LTI Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI%20Framework%20for%20Set%20Reachability%20Inclusion%20in%20Discrete-Time%20LTI%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Hadizadeh%20Kafash,%20Sahand&rft.date=2022-06-01&rft.volume=67&rft.issue=6&rft.spage=2997&rft.epage=3004&rft.pages=2997-3004&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3091412&rft_dat=%3Cproquest_RIE%3E2670203334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670203334&rft_id=info:pmid/&rft_ieee_id=9464691&rfr_iscdi=true