A Machine-Learning-Based Approach for Autonomous IoT Security
Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourc...
Gespeichert in:
Veröffentlicht in: | IT professional 2021-05, Vol.23 (3), p.69-75 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 3 |
container_start_page | 69 |
container_title | IT professional |
container_volume | 23 |
creator | Saba, Tanzila Haseeb, Khalid Shah, Asghar Ali Rehman, Amjad Tariq, Usman Mehmood, Zahid |
description | Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions. |
doi_str_mv | 10.1109/MITP.2020.3031358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9464120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9464120</ieee_id><sourcerecordid>2544955500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseE7Nx2R3c_CwFj8WWhSs4C1k00S32E1Ndg_992Zp8TIzMO878_IgdE3JjFIi75b16m3GCCMzTjjlojxBEyqBYgLi8zTNghEsk-AcXcS4IYTmAOUE3VfZUpvvtrN4YXXo2u4LP-ho11m12wWfVpnzIauG3nd-64eY1X6VvVszhLbfX6Izp3-ivTr2Kfp4elzNX_Di9bmeVwtsmOQ9dqyBQgIripw7BpQ1DfBmbblpYJ2XDoQUVFBqSCl1znMnrAWrDRQ6FUf4FN0e7qZIv4ONvdr4IXTppWICQAohyKiiB5UJPsZgndqFdqvDXlGiRkpqpKRGSupIKXluDp7WWvuvl5CnlIT_AV6XYbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544955500</pqid></control><display><type>article</type><title>A Machine-Learning-Based Approach for Autonomous IoT Security</title><source>IEEE Electronic Library (IEL)</source><creator>Saba, Tanzila ; Haseeb, Khalid ; Shah, Asghar Ali ; Rehman, Amjad ; Tariq, Usman ; Mehmood, Zahid</creator><creatorcontrib>Saba, Tanzila ; Haseeb, Khalid ; Shah, Asghar Ali ; Rehman, Amjad ; Tariq, Usman ; Mehmood, Zahid</creatorcontrib><description>Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions.</description><identifier>ISSN: 1520-9202</identifier><identifier>EISSN: 1941-045X</identifier><identifier>DOI: 10.1109/MITP.2020.3031358</identifier><identifier>CODEN: IPMAFM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Algorithms ; Cryptography ; Data transmission ; Energy consumption ; Fault tolerance ; Heuristic algorithms ; Internet of Things ; Intrusion detection ; Machine learning ; Machine learning algorithms ; Protocols ; Sensor phenomena and characterization ; Wireless sensor networks</subject><ispartof>IT professional, 2021-05, Vol.23 (3), p.69-75</ispartof><rights>Copyright IEEE Computer Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</citedby><cites>FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</cites><orcidid>0000-0003-4888-2594 ; 0000-0001-7672-1187 ; 0000-0001-6657-9308 ; 0000-0003-3138-3801 ; 0000-0002-0325-7579 ; 0000-0002-3817-2655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9464120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9464120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Haseeb, Khalid</creatorcontrib><creatorcontrib>Shah, Asghar Ali</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Tariq, Usman</creatorcontrib><creatorcontrib>Mehmood, Zahid</creatorcontrib><title>A Machine-Learning-Based Approach for Autonomous IoT Security</title><title>IT professional</title><addtitle>ITP-M</addtitle><description>Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Data transmission</subject><subject>Energy consumption</subject><subject>Fault tolerance</subject><subject>Heuristic algorithms</subject><subject>Internet of Things</subject><subject>Intrusion detection</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Protocols</subject><subject>Sensor phenomena and characterization</subject><subject>Wireless sensor networks</subject><issn>1520-9202</issn><issn>1941-045X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseE7Nx2R3c_CwFj8WWhSs4C1k00S32E1Ndg_992Zp8TIzMO878_IgdE3JjFIi75b16m3GCCMzTjjlojxBEyqBYgLi8zTNghEsk-AcXcS4IYTmAOUE3VfZUpvvtrN4YXXo2u4LP-ho11m12wWfVpnzIauG3nd-64eY1X6VvVszhLbfX6Izp3-ivTr2Kfp4elzNX_Di9bmeVwtsmOQ9dqyBQgIripw7BpQ1DfBmbblpYJ2XDoQUVFBqSCl1znMnrAWrDRQ6FUf4FN0e7qZIv4ONvdr4IXTppWICQAohyKiiB5UJPsZgndqFdqvDXlGiRkpqpKRGSupIKXluDp7WWvuvl5CnlIT_AV6XYbo</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Saba, Tanzila</creator><creator>Haseeb, Khalid</creator><creator>Shah, Asghar Ali</creator><creator>Rehman, Amjad</creator><creator>Tariq, Usman</creator><creator>Mehmood, Zahid</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4888-2594</orcidid><orcidid>https://orcid.org/0000-0001-7672-1187</orcidid><orcidid>https://orcid.org/0000-0001-6657-9308</orcidid><orcidid>https://orcid.org/0000-0003-3138-3801</orcidid><orcidid>https://orcid.org/0000-0002-0325-7579</orcidid><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid></search><sort><creationdate>20210501</creationdate><title>A Machine-Learning-Based Approach for Autonomous IoT Security</title><author>Saba, Tanzila ; Haseeb, Khalid ; Shah, Asghar Ali ; Rehman, Amjad ; Tariq, Usman ; Mehmood, Zahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Data transmission</topic><topic>Energy consumption</topic><topic>Fault tolerance</topic><topic>Heuristic algorithms</topic><topic>Internet of Things</topic><topic>Intrusion detection</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Protocols</topic><topic>Sensor phenomena and characterization</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Haseeb, Khalid</creatorcontrib><creatorcontrib>Shah, Asghar Ali</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Tariq, Usman</creatorcontrib><creatorcontrib>Mehmood, Zahid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IT professional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saba, Tanzila</au><au>Haseeb, Khalid</au><au>Shah, Asghar Ali</au><au>Rehman, Amjad</au><au>Tariq, Usman</au><au>Mehmood, Zahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine-Learning-Based Approach for Autonomous IoT Security</atitle><jtitle>IT professional</jtitle><stitle>ITP-M</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><spage>69</spage><epage>75</epage><pages>69-75</pages><issn>1520-9202</issn><eissn>1941-045X</eissn><coden>IPMAFM</coden><abstract>Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/MITP.2020.3031358</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4888-2594</orcidid><orcidid>https://orcid.org/0000-0001-7672-1187</orcidid><orcidid>https://orcid.org/0000-0001-6657-9308</orcidid><orcidid>https://orcid.org/0000-0003-3138-3801</orcidid><orcidid>https://orcid.org/0000-0002-0325-7579</orcidid><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9202 |
ispartof | IT professional, 2021-05, Vol.23 (3), p.69-75 |
issn | 1520-9202 1941-045X |
language | eng |
recordid | cdi_ieee_primary_9464120 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cryptography Data transmission Energy consumption Fault tolerance Heuristic algorithms Internet of Things Intrusion detection Machine learning Machine learning algorithms Protocols Sensor phenomena and characterization Wireless sensor networks |
title | A Machine-Learning-Based Approach for Autonomous IoT Security |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine-Learning-Based%20Approach%20for%20Autonomous%20IoT%20Security&rft.jtitle=IT%20professional&rft.au=Saba,%20Tanzila&rft.date=2021-05-01&rft.volume=23&rft.issue=3&rft.spage=69&rft.epage=75&rft.pages=69-75&rft.issn=1520-9202&rft.eissn=1941-045X&rft.coden=IPMAFM&rft_id=info:doi/10.1109/MITP.2020.3031358&rft_dat=%3Cproquest_RIE%3E2544955500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544955500&rft_id=info:pmid/&rft_ieee_id=9464120&rfr_iscdi=true |