A Machine-Learning-Based Approach for Autonomous IoT Security

Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IT professional 2021-05, Vol.23 (3), p.69-75
Hauptverfasser: Saba, Tanzila, Haseeb, Khalid, Shah, Asghar Ali, Rehman, Amjad, Tariq, Usman, Mehmood, Zahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 3
container_start_page 69
container_title IT professional
container_volume 23
creator Saba, Tanzila
Haseeb, Khalid
Shah, Asghar Ali
Rehman, Amjad
Tariq, Usman
Mehmood, Zahid
description Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions.
doi_str_mv 10.1109/MITP.2020.3031358
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9464120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9464120</ieee_id><sourcerecordid>2544955500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseE7Nx2R3c_CwFj8WWhSs4C1k00S32E1Ndg_992Zp8TIzMO878_IgdE3JjFIi75b16m3GCCMzTjjlojxBEyqBYgLi8zTNghEsk-AcXcS4IYTmAOUE3VfZUpvvtrN4YXXo2u4LP-ho11m12wWfVpnzIauG3nd-64eY1X6VvVszhLbfX6Izp3-ivTr2Kfp4elzNX_Di9bmeVwtsmOQ9dqyBQgIripw7BpQ1DfBmbblpYJ2XDoQUVFBqSCl1znMnrAWrDRQ6FUf4FN0e7qZIv4ONvdr4IXTppWICQAohyKiiB5UJPsZgndqFdqvDXlGiRkpqpKRGSupIKXluDp7WWvuvl5CnlIT_AV6XYbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544955500</pqid></control><display><type>article</type><title>A Machine-Learning-Based Approach for Autonomous IoT Security</title><source>IEEE Electronic Library (IEL)</source><creator>Saba, Tanzila ; Haseeb, Khalid ; Shah, Asghar Ali ; Rehman, Amjad ; Tariq, Usman ; Mehmood, Zahid</creator><creatorcontrib>Saba, Tanzila ; Haseeb, Khalid ; Shah, Asghar Ali ; Rehman, Amjad ; Tariq, Usman ; Mehmood, Zahid</creatorcontrib><description>Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions.</description><identifier>ISSN: 1520-9202</identifier><identifier>EISSN: 1941-045X</identifier><identifier>DOI: 10.1109/MITP.2020.3031358</identifier><identifier>CODEN: IPMAFM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Algorithms ; Cryptography ; Data transmission ; Energy consumption ; Fault tolerance ; Heuristic algorithms ; Internet of Things ; Intrusion detection ; Machine learning ; Machine learning algorithms ; Protocols ; Sensor phenomena and characterization ; Wireless sensor networks</subject><ispartof>IT professional, 2021-05, Vol.23 (3), p.69-75</ispartof><rights>Copyright IEEE Computer Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</citedby><cites>FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</cites><orcidid>0000-0003-4888-2594 ; 0000-0001-7672-1187 ; 0000-0001-6657-9308 ; 0000-0003-3138-3801 ; 0000-0002-0325-7579 ; 0000-0002-3817-2655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9464120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9464120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Haseeb, Khalid</creatorcontrib><creatorcontrib>Shah, Asghar Ali</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Tariq, Usman</creatorcontrib><creatorcontrib>Mehmood, Zahid</creatorcontrib><title>A Machine-Learning-Based Approach for Autonomous IoT Security</title><title>IT professional</title><addtitle>ITP-M</addtitle><description>Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Data transmission</subject><subject>Energy consumption</subject><subject>Fault tolerance</subject><subject>Heuristic algorithms</subject><subject>Internet of Things</subject><subject>Intrusion detection</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Protocols</subject><subject>Sensor phenomena and characterization</subject><subject>Wireless sensor networks</subject><issn>1520-9202</issn><issn>1941-045X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseE7Nx2R3c_CwFj8WWhSs4C1k00S32E1Ndg_992Zp8TIzMO878_IgdE3JjFIi75b16m3GCCMzTjjlojxBEyqBYgLi8zTNghEsk-AcXcS4IYTmAOUE3VfZUpvvtrN4YXXo2u4LP-ho11m12wWfVpnzIauG3nd-64eY1X6VvVszhLbfX6Izp3-ivTr2Kfp4elzNX_Di9bmeVwtsmOQ9dqyBQgIripw7BpQ1DfBmbblpYJ2XDoQUVFBqSCl1znMnrAWrDRQ6FUf4FN0e7qZIv4ONvdr4IXTppWICQAohyKiiB5UJPsZgndqFdqvDXlGiRkpqpKRGSupIKXluDp7WWvuvl5CnlIT_AV6XYbo</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Saba, Tanzila</creator><creator>Haseeb, Khalid</creator><creator>Shah, Asghar Ali</creator><creator>Rehman, Amjad</creator><creator>Tariq, Usman</creator><creator>Mehmood, Zahid</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4888-2594</orcidid><orcidid>https://orcid.org/0000-0001-7672-1187</orcidid><orcidid>https://orcid.org/0000-0001-6657-9308</orcidid><orcidid>https://orcid.org/0000-0003-3138-3801</orcidid><orcidid>https://orcid.org/0000-0002-0325-7579</orcidid><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid></search><sort><creationdate>20210501</creationdate><title>A Machine-Learning-Based Approach for Autonomous IoT Security</title><author>Saba, Tanzila ; Haseeb, Khalid ; Shah, Asghar Ali ; Rehman, Amjad ; Tariq, Usman ; Mehmood, Zahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f2b479427763f2412bb43bde3cb4d68f45951511c089a636f5ee4eac47aac4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Data transmission</topic><topic>Energy consumption</topic><topic>Fault tolerance</topic><topic>Heuristic algorithms</topic><topic>Internet of Things</topic><topic>Intrusion detection</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Protocols</topic><topic>Sensor phenomena and characterization</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Haseeb, Khalid</creatorcontrib><creatorcontrib>Shah, Asghar Ali</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Tariq, Usman</creatorcontrib><creatorcontrib>Mehmood, Zahid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IT professional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saba, Tanzila</au><au>Haseeb, Khalid</au><au>Shah, Asghar Ali</au><au>Rehman, Amjad</au><au>Tariq, Usman</au><au>Mehmood, Zahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine-Learning-Based Approach for Autonomous IoT Security</atitle><jtitle>IT professional</jtitle><stitle>ITP-M</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><spage>69</spage><epage>75</epage><pages>69-75</pages><issn>1520-9202</issn><eissn>1941-045X</eissn><coden>IPMAFM</coden><abstract>Machine learning techniques are proven valuable for the Internet of things (IoT) due to intelligent and cost-effective computing processes. In recent decades, wireless sensor network (WSN) and machine learning are integrated to give significant improvements for energy-based systems. However, resourceful routes analytic with nominal energy consumption are some demanding challenges. Moreover, WSN operates in an unpredictable space and a lot of network threats can be harmful to smart and secure data gathering. Consequently, security against such threats is another major concern for low-power sensors. Therefore, we aim to present a machine learning-based approach for autonomous IoT Security to achieve optimal energy efficiency and reliable transmissions. First, the proposed protocol optimizes network performance using a model-free Q-learning algorithm and achieves fault-tolerant data transmission. Second, it accomplishes data confidentiality against adversaries using a cryptography-based deterministic algorithm. The proposed protocol demonstrates better conclusions than other existing solutions.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/MITP.2020.3031358</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4888-2594</orcidid><orcidid>https://orcid.org/0000-0001-7672-1187</orcidid><orcidid>https://orcid.org/0000-0001-6657-9308</orcidid><orcidid>https://orcid.org/0000-0003-3138-3801</orcidid><orcidid>https://orcid.org/0000-0002-0325-7579</orcidid><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9202
ispartof IT professional, 2021-05, Vol.23 (3), p.69-75
issn 1520-9202
1941-045X
language eng
recordid cdi_ieee_primary_9464120
source IEEE Electronic Library (IEL)
subjects Algorithms
Cryptography
Data transmission
Energy consumption
Fault tolerance
Heuristic algorithms
Internet of Things
Intrusion detection
Machine learning
Machine learning algorithms
Protocols
Sensor phenomena and characterization
Wireless sensor networks
title A Machine-Learning-Based Approach for Autonomous IoT Security
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine-Learning-Based%20Approach%20for%20Autonomous%20IoT%20Security&rft.jtitle=IT%20professional&rft.au=Saba,%20Tanzila&rft.date=2021-05-01&rft.volume=23&rft.issue=3&rft.spage=69&rft.epage=75&rft.pages=69-75&rft.issn=1520-9202&rft.eissn=1941-045X&rft.coden=IPMAFM&rft_id=info:doi/10.1109/MITP.2020.3031358&rft_dat=%3Cproquest_RIE%3E2544955500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544955500&rft_id=info:pmid/&rft_ieee_id=9464120&rfr_iscdi=true