Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells
In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reachin...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2021-09, Vol.11 (5), p.1141-1148 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1148 |
---|---|
container_issue | 5 |
container_start_page | 1141 |
container_title | IEEE journal of photovoltaics |
container_volume | 11 |
creator | Jain, Aditi Choi, Wook-Jin Huang, Ying-Yuan Klein, Benjamin Rohatgi, Ajeet |
description | In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells. |
doi_str_mv | 10.1109/JPHOTOV.2021.3086461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9462837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9462837</ieee_id><sourcerecordid>2562952865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</originalsourceid><addsrcrecordid>eNo9kVtPGzEQhVcVlYoov6A8WOWVTX1Ze-3HKiEFhBRULq-W154Fo8UOttOq_HqcJu28zJnRd0YjnaY5IXhGCFbfrm4uVnerhxnFlMwYlqIT5ENzSAkXLeswO_inmSSfmuOcn3EtgbkQ3WHzewHZP4YztFoX_-LfTPGxTiY4dBnaBazLE7oPDlIudefDI4ojWqYYyl_mJ5iErjbBbm1oETfDBO2td4BuTM7-lyng0LzSxpaMbuNU8TlMU_7cfBzNlOF434-a--X53fyivV79uJx_v24to6K0PXcdF3LsWT86pTA4LI1lBjgo11OOBzVKYYeh56N1jvCxo4NiijlGwFV11Hzd3Y25eJ2tL2CfbAwBbNFEdpLTvkKnO2id4usGctHPcZNC_UtTLqjiVApeqW5H2RRzTjDqdfIvJv3RBOttFHofhd5GofdRVNuXnc0DwH-L6gSVrGfvMvuFvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562952865</pqid></control><display><type>article</type><title>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Jain, Aditi ; Choi, Wook-Jin ; Huang, Ying-Yuan ; Klein, Benjamin ; Rohatgi, Ajeet</creator><creatorcontrib>Jain, Aditi ; Choi, Wook-Jin ; Huang, Ying-Yuan ; Klein, Benjamin ; Rohatgi, Ajeet ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3086461</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption ; Boron ; Conductivity ; Design optimization ; Double-side topcon ; Efficiency ; Electrical resistivity ; Emitters ; Energy & Fuels ; front junction ; Hole mobility ; Junctions ; Material properties ; Materials Science ; Numerical models ; passivated contacts ; Photovoltaic cells ; Physics ; Polysilicon ; rear junction ; roadmap ; screen-printed contacts ; Silicon ; Solar cells ; Solid solubility ; Topology</subject><ispartof>IEEE journal of photovoltaics, 2021-09, Vol.11 (5), p.1141-1148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</citedby><cites>FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</cites><orcidid>0000-0002-2805-4428 ; 0000-0002-7561-5996 ; 0000-0002-1089-6459 ; 0000000228054428 ; 0000000275615996 ; 0000000210896459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9462837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9462837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1848527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Aditi</creatorcontrib><creatorcontrib>Choi, Wook-Jin</creatorcontrib><creatorcontrib>Huang, Ying-Yuan</creatorcontrib><creatorcontrib>Klein, Benjamin</creatorcontrib><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells.</description><subject>Absorption</subject><subject>Boron</subject><subject>Conductivity</subject><subject>Design optimization</subject><subject>Double-side topcon</subject><subject>Efficiency</subject><subject>Electrical resistivity</subject><subject>Emitters</subject><subject>Energy & Fuels</subject><subject>front junction</subject><subject>Hole mobility</subject><subject>Junctions</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Numerical models</subject><subject>passivated contacts</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Polysilicon</subject><subject>rear junction</subject><subject>roadmap</subject><subject>screen-printed contacts</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Solid solubility</subject><subject>Topology</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kVtPGzEQhVcVlYoov6A8WOWVTX1Ze-3HKiEFhBRULq-W154Fo8UOttOq_HqcJu28zJnRd0YjnaY5IXhGCFbfrm4uVnerhxnFlMwYlqIT5ENzSAkXLeswO_inmSSfmuOcn3EtgbkQ3WHzewHZP4YztFoX_-LfTPGxTiY4dBnaBazLE7oPDlIudefDI4ojWqYYyl_mJ5iErjbBbm1oETfDBO2td4BuTM7-lyng0LzSxpaMbuNU8TlMU_7cfBzNlOF434-a--X53fyivV79uJx_v24to6K0PXcdF3LsWT86pTA4LI1lBjgo11OOBzVKYYeh56N1jvCxo4NiijlGwFV11Hzd3Y25eJ2tL2CfbAwBbNFEdpLTvkKnO2id4usGctHPcZNC_UtTLqjiVApeqW5H2RRzTjDqdfIvJv3RBOttFHofhd5GofdRVNuXnc0DwH-L6gSVrGfvMvuFvQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Jain, Aditi</creator><creator>Choi, Wook-Jin</creator><creator>Huang, Ying-Yuan</creator><creator>Klein, Benjamin</creator><creator>Rohatgi, Ajeet</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2805-4428</orcidid><orcidid>https://orcid.org/0000-0002-7561-5996</orcidid><orcidid>https://orcid.org/0000-0002-1089-6459</orcidid><orcidid>https://orcid.org/0000000228054428</orcidid><orcidid>https://orcid.org/0000000275615996</orcidid><orcidid>https://orcid.org/0000000210896459</orcidid></search><sort><creationdate>20210901</creationdate><title>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</title><author>Jain, Aditi ; Choi, Wook-Jin ; Huang, Ying-Yuan ; Klein, Benjamin ; Rohatgi, Ajeet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Boron</topic><topic>Conductivity</topic><topic>Design optimization</topic><topic>Double-side topcon</topic><topic>Efficiency</topic><topic>Electrical resistivity</topic><topic>Emitters</topic><topic>Energy & Fuels</topic><topic>front junction</topic><topic>Hole mobility</topic><topic>Junctions</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Numerical models</topic><topic>passivated contacts</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Polysilicon</topic><topic>rear junction</topic><topic>roadmap</topic><topic>screen-printed contacts</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Solid solubility</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Aditi</creatorcontrib><creatorcontrib>Choi, Wook-Jin</creatorcontrib><creatorcontrib>Huang, Ying-Yuan</creatorcontrib><creatorcontrib>Klein, Benjamin</creatorcontrib><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jain, Aditi</au><au>Choi, Wook-Jin</au><au>Huang, Ying-Yuan</au><au>Klein, Benjamin</au><au>Rohatgi, Ajeet</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>1141</spage><epage>1148</epage><pages>1141-1148</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3086461</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2805-4428</orcidid><orcidid>https://orcid.org/0000-0002-7561-5996</orcidid><orcidid>https://orcid.org/0000-0002-1089-6459</orcidid><orcidid>https://orcid.org/0000000228054428</orcidid><orcidid>https://orcid.org/0000000275615996</orcidid><orcidid>https://orcid.org/0000000210896459</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2021-09, Vol.11 (5), p.1141-1148 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_9462837 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Boron Conductivity Design optimization Double-side topcon Efficiency Electrical resistivity Emitters Energy & Fuels front junction Hole mobility Junctions Material properties Materials Science Numerical models passivated contacts Photovoltaic cells Physics Polysilicon rear junction roadmap screen-printed contacts Silicon Solar cells Solid solubility Topology |
title | Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Optimization,%20and%20In-Depth%20Understanding%20of%20Front%20and%20Rear%20Junction%20Double-Side%20Passivated%20Contacts%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Jain,%20Aditi&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2021-09-01&rft.volume=11&rft.issue=5&rft.spage=1141&rft.epage=1148&rft.pages=1141-1148&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3086461&rft_dat=%3Cproquest_RIE%3E2562952865%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562952865&rft_id=info:pmid/&rft_ieee_id=9462837&rfr_iscdi=true |