Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells

In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reachin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2021-09, Vol.11 (5), p.1141-1148
Hauptverfasser: Jain, Aditi, Choi, Wook-Jin, Huang, Ying-Yuan, Klein, Benjamin, Rohatgi, Ajeet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1148
container_issue 5
container_start_page 1141
container_title IEEE journal of photovoltaics
container_volume 11
creator Jain, Aditi
Choi, Wook-Jin
Huang, Ying-Yuan
Klein, Benjamin
Rohatgi, Ajeet
description In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells.
doi_str_mv 10.1109/JPHOTOV.2021.3086461
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9462837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9462837</ieee_id><sourcerecordid>2562952865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</originalsourceid><addsrcrecordid>eNo9kVtPGzEQhVcVlYoov6A8WOWVTX1Ze-3HKiEFhBRULq-W154Fo8UOttOq_HqcJu28zJnRd0YjnaY5IXhGCFbfrm4uVnerhxnFlMwYlqIT5ENzSAkXLeswO_inmSSfmuOcn3EtgbkQ3WHzewHZP4YztFoX_-LfTPGxTiY4dBnaBazLE7oPDlIudefDI4ojWqYYyl_mJ5iErjbBbm1oETfDBO2td4BuTM7-lyng0LzSxpaMbuNU8TlMU_7cfBzNlOF434-a--X53fyivV79uJx_v24to6K0PXcdF3LsWT86pTA4LI1lBjgo11OOBzVKYYeh56N1jvCxo4NiijlGwFV11Hzd3Y25eJ2tL2CfbAwBbNFEdpLTvkKnO2id4usGctHPcZNC_UtTLqjiVApeqW5H2RRzTjDqdfIvJv3RBOttFHofhd5GofdRVNuXnc0DwH-L6gSVrGfvMvuFvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562952865</pqid></control><display><type>article</type><title>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Jain, Aditi ; Choi, Wook-Jin ; Huang, Ying-Yuan ; Klein, Benjamin ; Rohatgi, Ajeet</creator><creatorcontrib>Jain, Aditi ; Choi, Wook-Jin ; Huang, Ying-Yuan ; Klein, Benjamin ; Rohatgi, Ajeet ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3086461</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption ; Boron ; Conductivity ; Design optimization ; Double-side topcon ; Efficiency ; Electrical resistivity ; Emitters ; Energy &amp; Fuels ; front junction ; Hole mobility ; Junctions ; Material properties ; Materials Science ; Numerical models ; passivated contacts ; Photovoltaic cells ; Physics ; Polysilicon ; rear junction ; roadmap ; screen-printed contacts ; Silicon ; Solar cells ; Solid solubility ; Topology</subject><ispartof>IEEE journal of photovoltaics, 2021-09, Vol.11 (5), p.1141-1148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</citedby><cites>FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</cites><orcidid>0000-0002-2805-4428 ; 0000-0002-7561-5996 ; 0000-0002-1089-6459 ; 0000000228054428 ; 0000000275615996 ; 0000000210896459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9462837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9462837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1848527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Aditi</creatorcontrib><creatorcontrib>Choi, Wook-Jin</creatorcontrib><creatorcontrib>Huang, Ying-Yuan</creatorcontrib><creatorcontrib>Klein, Benjamin</creatorcontrib><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells.</description><subject>Absorption</subject><subject>Boron</subject><subject>Conductivity</subject><subject>Design optimization</subject><subject>Double-side topcon</subject><subject>Efficiency</subject><subject>Electrical resistivity</subject><subject>Emitters</subject><subject>Energy &amp; Fuels</subject><subject>front junction</subject><subject>Hole mobility</subject><subject>Junctions</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Numerical models</subject><subject>passivated contacts</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Polysilicon</subject><subject>rear junction</subject><subject>roadmap</subject><subject>screen-printed contacts</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Solid solubility</subject><subject>Topology</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kVtPGzEQhVcVlYoov6A8WOWVTX1Ze-3HKiEFhBRULq-W154Fo8UOttOq_HqcJu28zJnRd0YjnaY5IXhGCFbfrm4uVnerhxnFlMwYlqIT5ENzSAkXLeswO_inmSSfmuOcn3EtgbkQ3WHzewHZP4YztFoX_-LfTPGxTiY4dBnaBazLE7oPDlIudefDI4ojWqYYyl_mJ5iErjbBbm1oETfDBO2td4BuTM7-lyng0LzSxpaMbuNU8TlMU_7cfBzNlOF434-a--X53fyivV79uJx_v24to6K0PXcdF3LsWT86pTA4LI1lBjgo11OOBzVKYYeh56N1jvCxo4NiijlGwFV11Hzd3Y25eJ2tL2CfbAwBbNFEdpLTvkKnO2id4usGctHPcZNC_UtTLqjiVApeqW5H2RRzTjDqdfIvJv3RBOttFHofhd5GofdRVNuXnc0DwH-L6gSVrGfvMvuFvQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Jain, Aditi</creator><creator>Choi, Wook-Jin</creator><creator>Huang, Ying-Yuan</creator><creator>Klein, Benjamin</creator><creator>Rohatgi, Ajeet</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2805-4428</orcidid><orcidid>https://orcid.org/0000-0002-7561-5996</orcidid><orcidid>https://orcid.org/0000-0002-1089-6459</orcidid><orcidid>https://orcid.org/0000000228054428</orcidid><orcidid>https://orcid.org/0000000275615996</orcidid><orcidid>https://orcid.org/0000000210896459</orcidid></search><sort><creationdate>20210901</creationdate><title>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</title><author>Jain, Aditi ; Choi, Wook-Jin ; Huang, Ying-Yuan ; Klein, Benjamin ; Rohatgi, Ajeet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-75d4568f737fd990ed08ac3ae5e9d7250b9f86cbb75fcdd15f42b9393d31edb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Boron</topic><topic>Conductivity</topic><topic>Design optimization</topic><topic>Double-side topcon</topic><topic>Efficiency</topic><topic>Electrical resistivity</topic><topic>Emitters</topic><topic>Energy &amp; Fuels</topic><topic>front junction</topic><topic>Hole mobility</topic><topic>Junctions</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Numerical models</topic><topic>passivated contacts</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Polysilicon</topic><topic>rear junction</topic><topic>roadmap</topic><topic>screen-printed contacts</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Solid solubility</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Aditi</creatorcontrib><creatorcontrib>Choi, Wook-Jin</creatorcontrib><creatorcontrib>Huang, Ying-Yuan</creatorcontrib><creatorcontrib>Klein, Benjamin</creatorcontrib><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jain, Aditi</au><au>Choi, Wook-Jin</au><au>Huang, Ying-Yuan</au><au>Klein, Benjamin</au><au>Rohatgi, Ajeet</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>1141</spage><epage>1148</epage><pages>1141-1148</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>In this article, detailed numerical modeling is performed for front junction (FJ) and rear junction (RJ) n-type Si solar cells with screen-printed double-side poly-Si based tunnel oxide passivated contacts (TOPCon). A roadmap for efficiency projections of commercial-type RJ and FJ topologies reaching 24.8% and 23.3% efficiencies, respectively, has been developed to quantify and explain the impact of various technological innovations on the performance of each design. Understanding of mechanisms governing cell operation is crucial to explore factors that limit the efficiency potential of the two device structures. By investigating several key parameters such as front poly-Si sheet resistance and thickness, bulk material properties, and current transport in our simulation model, we determine and explain why RJ cells outperform FJ cells. Our findings reveal that FJ suffers from present technological limitations of p-type poly-Si based passivated contacts-namely, 1) large recombination observed in textured p-TOPCon layers and 2) low boron solid solubility and hole mobility in boron-doped poly-Si which results in very high sheet resistance of the front p-poly-Si emitter that contributes to fill factor degradation, especially when using thin poly-Si layer to reduce absorption losses. RJ on the contrary desensitizes the cell efficiency to front sheet resistance to allow the application of ultra-thin front n-type poly-Si layer and is therefore ideally suited for double-side TOPCon cells.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3086461</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2805-4428</orcidid><orcidid>https://orcid.org/0000-0002-7561-5996</orcidid><orcidid>https://orcid.org/0000-0002-1089-6459</orcidid><orcidid>https://orcid.org/0000000228054428</orcidid><orcidid>https://orcid.org/0000000275615996</orcidid><orcidid>https://orcid.org/0000000210896459</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2021-09, Vol.11 (5), p.1141-1148
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_9462837
source IEEE Electronic Library (IEL)
subjects Absorption
Boron
Conductivity
Design optimization
Double-side topcon
Efficiency
Electrical resistivity
Emitters
Energy & Fuels
front junction
Hole mobility
Junctions
Material properties
Materials Science
Numerical models
passivated contacts
Photovoltaic cells
Physics
Polysilicon
rear junction
roadmap
screen-printed contacts
Silicon
Solar cells
Solid solubility
Topology
title Design, Optimization, and In-Depth Understanding of Front and Rear Junction Double-Side Passivated Contacts Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Optimization,%20and%20In-Depth%20Understanding%20of%20Front%20and%20Rear%20Junction%20Double-Side%20Passivated%20Contacts%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Jain,%20Aditi&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2021-09-01&rft.volume=11&rft.issue=5&rft.spage=1141&rft.epage=1148&rft.pages=1141-1148&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3086461&rft_dat=%3Cproquest_RIE%3E2562952865%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562952865&rft_id=info:pmid/&rft_ieee_id=9462837&rfr_iscdi=true