An Integration Method of Resonant Switched-Capacitor Converters Based on Parasitic Inductance
The parasitic inductor can be used as resonant component to increase the power density in resonant converters. However, the parasitic inductance value of PCB copper traces is not large enough to achieve zero current switching in low and medium switching frequency conditions. To tackle this problem,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2021-12, Vol.36 (12), p.13360-13364 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13364 |
---|---|
container_issue | 12 |
container_start_page | 13360 |
container_title | IEEE transactions on power electronics |
container_volume | 36 |
creator | Yu, Longyang Wang, Laili Wu, Bin Yang, Chengzi Zhao, Cheng Yang, Xu Zhang, Hong Gan, Yongmei |
description | The parasitic inductor can be used as resonant component to increase the power density in resonant converters. However, the parasitic inductance value of PCB copper traces is not large enough to achieve zero current switching in low and medium switching frequency conditions. To tackle this problem, a novel integration method to increase parasitic inductance value is proposed in this letter. The proposed method is based on direct coupling, which utilizes lateral structure and vertical structure to increase equivalent inductance between two parasitic inductors. The proposed method not only can achieve high efficiency, high power density, and very low profile design, but also can save the cost and space of discrete inductors for the designed prototype in low and medium frequency range. The comparison and design procedure of both lateral and vertical structures of the parasitic inductor are presented in details. Two 100-W prototypes employing gallium nitride devices are built to compare the discrete inductor solution with the proposed parasitic inductor integration method. The power density of the prototype using parasitic inductor is 62.5% higher than discrete inductance and has achieved a peak efficiency of 93.4%. |
doi_str_mv | 10.1109/TPEL.2021.3090581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9460789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9460789</ieee_id><sourcerecordid>2562952069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e93a9b64a6427db838672190ac41a1e98d0131edea161d732113426e880e12963</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWKsfIG4GXE99L5nJJMtaqhYqFq1LGdLMq52iSU1Sxb93Souruzn3XjiMXSIMEEHfzGfj6YADx4EADaXCI9ZDXWAOCNUx64FSZa60FqfsLMY1ABYlYI-9DV02cYneg0mtd9kjpZVvMr_Mnil6Z1zKXn7aZFfU5COzMbZNPmQj774pJAoxuzWROt5lMxNMbFNru71ma5Nxls7ZydJ8RLo4ZJ-93o3no4d8-nQ_GQ2nueVapJy0MHohCyMLXjULJZSsOGowtkCDpFUDKJAaMiixqQRHFAWXpBQQci1Fn13vdzfBf20ppnrtt8F1lzUvJdclB6k7CveUDT7GQMt6E9pPE35rhHpnsd5ZrHcW64PFrnO177RE9M_rQkKltPgDwcNs9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562952069</pqid></control><display><type>article</type><title>An Integration Method of Resonant Switched-Capacitor Converters Based on Parasitic Inductance</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Longyang ; Wang, Laili ; Wu, Bin ; Yang, Chengzi ; Zhao, Cheng ; Yang, Xu ; Zhang, Hong ; Gan, Yongmei</creator><creatorcontrib>Yu, Longyang ; Wang, Laili ; Wu, Bin ; Yang, Chengzi ; Zhao, Cheng ; Yang, Xu ; Zhang, Hong ; Gan, Yongmei</creatorcontrib><description>The parasitic inductor can be used as resonant component to increase the power density in resonant converters. However, the parasitic inductance value of PCB copper traces is not large enough to achieve zero current switching in low and medium switching frequency conditions. To tackle this problem, a novel integration method to increase parasitic inductance value is proposed in this letter. The proposed method is based on direct coupling, which utilizes lateral structure and vertical structure to increase equivalent inductance between two parasitic inductors. The proposed method not only can achieve high efficiency, high power density, and very low profile design, but also can save the cost and space of discrete inductors for the designed prototype in low and medium frequency range. The comparison and design procedure of both lateral and vertical structures of the parasitic inductor are presented in details. Two 100-W prototypes employing gallium nitride devices are built to compare the discrete inductor solution with the proposed parasitic inductor integration method. The power density of the prototype using parasitic inductor is 62.5% higher than discrete inductance and has achieved a peak efficiency of 93.4%.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3090581</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Copper ; Copper converters ; Density measurement ; Direct coupling ; Frequency ranges ; Gallium nitrides ; Inductance ; Inductors ; parasitic inductance ; Parasitics (electronics) ; Power system measurements ; Prototypes ; resonant converters ; Switches ; Switching ; the lateral structure ; the vertical structure ; Topology</subject><ispartof>IEEE transactions on power electronics, 2021-12, Vol.36 (12), p.13360-13364</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e93a9b64a6427db838672190ac41a1e98d0131edea161d732113426e880e12963</citedby><cites>FETCH-LOGICAL-c293t-e93a9b64a6427db838672190ac41a1e98d0131edea161d732113426e880e12963</cites><orcidid>0000-0002-0625-041X ; 0000-0002-3548-3044 ; 0000-0002-9938-5590 ; 0000-0003-1277-0208 ; 0000-0001-7205-4196 ; 0000-0003-0292-5659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9460789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9460789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Longyang</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wu, Bin</creatorcontrib><creatorcontrib>Yang, Chengzi</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><title>An Integration Method of Resonant Switched-Capacitor Converters Based on Parasitic Inductance</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The parasitic inductor can be used as resonant component to increase the power density in resonant converters. However, the parasitic inductance value of PCB copper traces is not large enough to achieve zero current switching in low and medium switching frequency conditions. To tackle this problem, a novel integration method to increase parasitic inductance value is proposed in this letter. The proposed method is based on direct coupling, which utilizes lateral structure and vertical structure to increase equivalent inductance between two parasitic inductors. The proposed method not only can achieve high efficiency, high power density, and very low profile design, but also can save the cost and space of discrete inductors for the designed prototype in low and medium frequency range. The comparison and design procedure of both lateral and vertical structures of the parasitic inductor are presented in details. Two 100-W prototypes employing gallium nitride devices are built to compare the discrete inductor solution with the proposed parasitic inductor integration method. The power density of the prototype using parasitic inductor is 62.5% higher than discrete inductance and has achieved a peak efficiency of 93.4%.</description><subject>Copper</subject><subject>Copper converters</subject><subject>Density measurement</subject><subject>Direct coupling</subject><subject>Frequency ranges</subject><subject>Gallium nitrides</subject><subject>Inductance</subject><subject>Inductors</subject><subject>parasitic inductance</subject><subject>Parasitics (electronics)</subject><subject>Power system measurements</subject><subject>Prototypes</subject><subject>resonant converters</subject><subject>Switches</subject><subject>Switching</subject><subject>the lateral structure</subject><subject>the vertical structure</subject><subject>Topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEURYMoWKsfIG4GXE99L5nJJMtaqhYqFq1LGdLMq52iSU1Sxb93Souruzn3XjiMXSIMEEHfzGfj6YADx4EADaXCI9ZDXWAOCNUx64FSZa60FqfsLMY1ABYlYI-9DV02cYneg0mtd9kjpZVvMr_Mnil6Z1zKXn7aZFfU5COzMbZNPmQj774pJAoxuzWROt5lMxNMbFNru71ma5Nxls7ZydJ8RLo4ZJ-93o3no4d8-nQ_GQ2nueVapJy0MHohCyMLXjULJZSsOGowtkCDpFUDKJAaMiixqQRHFAWXpBQQci1Fn13vdzfBf20ppnrtt8F1lzUvJdclB6k7CveUDT7GQMt6E9pPE35rhHpnsd5ZrHcW64PFrnO177RE9M_rQkKltPgDwcNs9A</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yu, Longyang</creator><creator>Wang, Laili</creator><creator>Wu, Bin</creator><creator>Yang, Chengzi</creator><creator>Zhao, Cheng</creator><creator>Yang, Xu</creator><creator>Zhang, Hong</creator><creator>Gan, Yongmei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0625-041X</orcidid><orcidid>https://orcid.org/0000-0002-3548-3044</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0003-0292-5659</orcidid></search><sort><creationdate>20211201</creationdate><title>An Integration Method of Resonant Switched-Capacitor Converters Based on Parasitic Inductance</title><author>Yu, Longyang ; Wang, Laili ; Wu, Bin ; Yang, Chengzi ; Zhao, Cheng ; Yang, Xu ; Zhang, Hong ; Gan, Yongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e93a9b64a6427db838672190ac41a1e98d0131edea161d732113426e880e12963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Copper</topic><topic>Copper converters</topic><topic>Density measurement</topic><topic>Direct coupling</topic><topic>Frequency ranges</topic><topic>Gallium nitrides</topic><topic>Inductance</topic><topic>Inductors</topic><topic>parasitic inductance</topic><topic>Parasitics (electronics)</topic><topic>Power system measurements</topic><topic>Prototypes</topic><topic>resonant converters</topic><topic>Switches</topic><topic>Switching</topic><topic>the lateral structure</topic><topic>the vertical structure</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Longyang</creatorcontrib><creatorcontrib>Wang, Laili</creatorcontrib><creatorcontrib>Wu, Bin</creatorcontrib><creatorcontrib>Yang, Chengzi</creatorcontrib><creatorcontrib>Zhao, Cheng</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Gan, Yongmei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Longyang</au><au>Wang, Laili</au><au>Wu, Bin</au><au>Yang, Chengzi</au><au>Zhao, Cheng</au><au>Yang, Xu</au><au>Zhang, Hong</au><au>Gan, Yongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integration Method of Resonant Switched-Capacitor Converters Based on Parasitic Inductance</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>36</volume><issue>12</issue><spage>13360</spage><epage>13364</epage><pages>13360-13364</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The parasitic inductor can be used as resonant component to increase the power density in resonant converters. However, the parasitic inductance value of PCB copper traces is not large enough to achieve zero current switching in low and medium switching frequency conditions. To tackle this problem, a novel integration method to increase parasitic inductance value is proposed in this letter. The proposed method is based on direct coupling, which utilizes lateral structure and vertical structure to increase equivalent inductance between two parasitic inductors. The proposed method not only can achieve high efficiency, high power density, and very low profile design, but also can save the cost and space of discrete inductors for the designed prototype in low and medium frequency range. The comparison and design procedure of both lateral and vertical structures of the parasitic inductor are presented in details. Two 100-W prototypes employing gallium nitride devices are built to compare the discrete inductor solution with the proposed parasitic inductor integration method. The power density of the prototype using parasitic inductor is 62.5% higher than discrete inductance and has achieved a peak efficiency of 93.4%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3090581</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0625-041X</orcidid><orcidid>https://orcid.org/0000-0002-3548-3044</orcidid><orcidid>https://orcid.org/0000-0002-9938-5590</orcidid><orcidid>https://orcid.org/0000-0003-1277-0208</orcidid><orcidid>https://orcid.org/0000-0001-7205-4196</orcidid><orcidid>https://orcid.org/0000-0003-0292-5659</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2021-12, Vol.36 (12), p.13360-13364 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9460789 |
source | IEEE Electronic Library (IEL) |
subjects | Copper Copper converters Density measurement Direct coupling Frequency ranges Gallium nitrides Inductance Inductors parasitic inductance Parasitics (electronics) Power system measurements Prototypes resonant converters Switches Switching the lateral structure the vertical structure Topology |
title | An Integration Method of Resonant Switched-Capacitor Converters Based on Parasitic Inductance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integration%20Method%20of%20Resonant%20Switched-Capacitor%20Converters%20Based%20on%20Parasitic%20Inductance&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yu,%20Longyang&rft.date=2021-12-01&rft.volume=36&rft.issue=12&rft.spage=13360&rft.epage=13364&rft.pages=13360-13364&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3090581&rft_dat=%3Cproquest_RIE%3E2562952069%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562952069&rft_id=info:pmid/&rft_ieee_id=9460789&rfr_iscdi=true |