A Computational Method for Learning Disease Trajectories From Partially Observable EHR Data

Diseases can show different courses of progression even when patients share the same risk factors. Recent studies have revealed that the use of trajectories, the order in which diseases manifest throughout life, can be predictive of the course of progression. In this study, we propose a novel comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2021-07, Vol.25 (7), p.2476-2486
Hauptverfasser: Oh, Wonsuk, Steinbach, Michael S., Castro, M. Regina, Peterson, Kevin A., Kumar, Vipin, Caraballo, Pedro J., Simon, Gyorgy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2486
container_issue 7
container_start_page 2476
container_title IEEE journal of biomedical and health informatics
container_volume 25
creator Oh, Wonsuk
Steinbach, Michael S.
Castro, M. Regina
Peterson, Kevin A.
Kumar, Vipin
Caraballo, Pedro J.
Simon, Gyorgy J.
description Diseases can show different courses of progression even when patients share the same risk factors. Recent studies have revealed that the use of trajectories, the order in which diseases manifest throughout life, can be predictive of the course of progression. In this study, we propose a novel computational method for learning disease trajectories from EHR data. The proposed method consists of three parts: first, we propose an algorithm for extracting trajectories from EHR data; second, three criteria for filtering trajectories; and third, a likelihood function for assessing the risk of developing a set of outcomes given a trajectory set. We applied our methods to extract a set of disease trajectories from Mayo Clinic EHR data and evaluated it internally based on log-likelihood, which can be interpreted as the trajectories' ability to explain the observed (partial) disease progressions. We then externally evaluated the trajectories on EHR data from an independent health system, M Health Fairview. The proposed algorithm extracted a comprehensive set of disease trajectories that can explain the observed outcomes substantially better than competing methods and the proposed filtering criteria selected a small subset of disease trajectories that are highly interpretable and suffered only a minimal (relative 5%) loss of the ability to explain disease progression in both the internal and external validation.
doi_str_mv 10.1109/JBHI.2021.3089441
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9456038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9456038</ieee_id><sourcerecordid>2555725654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-c1dc5a3a8bd4ad26edab581219585a14128a9f2dc6c0a39b47728b0174d595393</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhpfS0oQ0P6D0IuilFzv63JUuhdT5cIpLSklOOYhZ7TiR2V25kjaQf18Zu4F2LhpGz7y8zFtVHxmdM0bN2fdvy5s5p5zNBdVGSvamOuas1jPOqX77t2dGHlWnKW1oKV1Gpn5fHQnJuFGMHlcP52QRhu2UIfswQk9-YH4KHVmHSFYIcfTjI7nwCSEhuYuwQZdD9JjIVQwD-Qkxe-j7F3LbJozP0PZILpe_yAVk-FC9W0Of8PTwnlT3V5d3i-VsdXt9szhfzZzkMs8c65wCAbrtJHS8xg5apVmxrrQCVqxqMGveudpREKaVTcN1S1kjO2WUMOKk-rrX3U7tgJ3DMUfo7Tb6AeKLDeDtvz-jf7KP4dlqoTXTogh8OQjE8HvClO3gk8O-hxHDlCxXkjWal-MV9PN_6CZMsRxuRynVcFUrWSi2p1wMKUVcv5ph1O7Ss7v07C49e0iv7Hza73hEfOWNVDUVWvwBeP6TyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555725654</pqid></control><display><type>article</type><title>A Computational Method for Learning Disease Trajectories From Partially Observable EHR Data</title><source>IEEE Electronic Library (IEL)</source><creator>Oh, Wonsuk ; Steinbach, Michael S. ; Castro, M. Regina ; Peterson, Kevin A. ; Kumar, Vipin ; Caraballo, Pedro J. ; Simon, Gyorgy J.</creator><creatorcontrib>Oh, Wonsuk ; Steinbach, Michael S. ; Castro, M. Regina ; Peterson, Kevin A. ; Kumar, Vipin ; Caraballo, Pedro J. ; Simon, Gyorgy J.</creatorcontrib><description>Diseases can show different courses of progression even when patients share the same risk factors. Recent studies have revealed that the use of trajectories, the order in which diseases manifest throughout life, can be predictive of the course of progression. In this study, we propose a novel computational method for learning disease trajectories from EHR data. The proposed method consists of three parts: first, we propose an algorithm for extracting trajectories from EHR data; second, three criteria for filtering trajectories; and third, a likelihood function for assessing the risk of developing a set of outcomes given a trajectory set. We applied our methods to extract a set of disease trajectories from Mayo Clinic EHR data and evaluated it internally based on log-likelihood, which can be interpreted as the trajectories' ability to explain the observed (partial) disease progressions. We then externally evaluated the trajectories on EHR data from an independent health system, M Health Fairview. The proposed algorithm extracted a comprehensive set of disease trajectories that can explain the observed outcomes substantially better than competing methods and the proposed filtering criteria selected a small subset of disease trajectories that are highly interpretable and suffered only a minimal (relative 5%) loss of the ability to explain disease progression in both the internal and external validation.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3089441</identifier><identifier>PMID: 34129510</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bioinformatics ; Computer applications ; Criteria ; Data mining ; Diabetes ; Disease ; Disease trajectories ; Diseases ; electronic health records ; Evaluation ; Filtration ; Glucose ; Learning ; machine learning ; Manganese ; Progressions ; Risk analysis ; Risk factors ; Trajectory ; Trajectory analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-07, Vol.25 (7), p.2476-2486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-c1dc5a3a8bd4ad26edab581219585a14128a9f2dc6c0a39b47728b0174d595393</citedby><cites>FETCH-LOGICAL-c424t-c1dc5a3a8bd4ad26edab581219585a14128a9f2dc6c0a39b47728b0174d595393</cites><orcidid>0000-0003-0874-5026 ; 0000-0002-7309-6395 ; 0000-0001-9050-7080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9456038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9456038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oh, Wonsuk</creatorcontrib><creatorcontrib>Steinbach, Michael S.</creatorcontrib><creatorcontrib>Castro, M. Regina</creatorcontrib><creatorcontrib>Peterson, Kevin A.</creatorcontrib><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Caraballo, Pedro J.</creatorcontrib><creatorcontrib>Simon, Gyorgy J.</creatorcontrib><title>A Computational Method for Learning Disease Trajectories From Partially Observable EHR Data</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Diseases can show different courses of progression even when patients share the same risk factors. Recent studies have revealed that the use of trajectories, the order in which diseases manifest throughout life, can be predictive of the course of progression. In this study, we propose a novel computational method for learning disease trajectories from EHR data. The proposed method consists of three parts: first, we propose an algorithm for extracting trajectories from EHR data; second, three criteria for filtering trajectories; and third, a likelihood function for assessing the risk of developing a set of outcomes given a trajectory set. We applied our methods to extract a set of disease trajectories from Mayo Clinic EHR data and evaluated it internally based on log-likelihood, which can be interpreted as the trajectories' ability to explain the observed (partial) disease progressions. We then externally evaluated the trajectories on EHR data from an independent health system, M Health Fairview. The proposed algorithm extracted a comprehensive set of disease trajectories that can explain the observed outcomes substantially better than competing methods and the proposed filtering criteria selected a small subset of disease trajectories that are highly interpretable and suffered only a minimal (relative 5%) loss of the ability to explain disease progression in both the internal and external validation.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Computer applications</subject><subject>Criteria</subject><subject>Data mining</subject><subject>Diabetes</subject><subject>Disease</subject><subject>Disease trajectories</subject><subject>Diseases</subject><subject>electronic health records</subject><subject>Evaluation</subject><subject>Filtration</subject><subject>Glucose</subject><subject>Learning</subject><subject>machine learning</subject><subject>Manganese</subject><subject>Progressions</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhpfS0oQ0P6D0IuilFzv63JUuhdT5cIpLSklOOYhZ7TiR2V25kjaQf18Zu4F2LhpGz7y8zFtVHxmdM0bN2fdvy5s5p5zNBdVGSvamOuas1jPOqX77t2dGHlWnKW1oKV1Gpn5fHQnJuFGMHlcP52QRhu2UIfswQk9-YH4KHVmHSFYIcfTjI7nwCSEhuYuwQZdD9JjIVQwD-Qkxe-j7F3LbJozP0PZILpe_yAVk-FC9W0Of8PTwnlT3V5d3i-VsdXt9szhfzZzkMs8c65wCAbrtJHS8xg5apVmxrrQCVqxqMGveudpREKaVTcN1S1kjO2WUMOKk-rrX3U7tgJ3DMUfo7Tb6AeKLDeDtvz-jf7KP4dlqoTXTogh8OQjE8HvClO3gk8O-hxHDlCxXkjWal-MV9PN_6CZMsRxuRynVcFUrWSi2p1wMKUVcv5ph1O7Ss7v07C49e0iv7Hza73hEfOWNVDUVWvwBeP6TyQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Oh, Wonsuk</creator><creator>Steinbach, Michael S.</creator><creator>Castro, M. Regina</creator><creator>Peterson, Kevin A.</creator><creator>Kumar, Vipin</creator><creator>Caraballo, Pedro J.</creator><creator>Simon, Gyorgy J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0874-5026</orcidid><orcidid>https://orcid.org/0000-0002-7309-6395</orcidid><orcidid>https://orcid.org/0000-0001-9050-7080</orcidid></search><sort><creationdate>20210701</creationdate><title>A Computational Method for Learning Disease Trajectories From Partially Observable EHR Data</title><author>Oh, Wonsuk ; Steinbach, Michael S. ; Castro, M. Regina ; Peterson, Kevin A. ; Kumar, Vipin ; Caraballo, Pedro J. ; Simon, Gyorgy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-c1dc5a3a8bd4ad26edab581219585a14128a9f2dc6c0a39b47728b0174d595393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Computer applications</topic><topic>Criteria</topic><topic>Data mining</topic><topic>Diabetes</topic><topic>Disease</topic><topic>Disease trajectories</topic><topic>Diseases</topic><topic>electronic health records</topic><topic>Evaluation</topic><topic>Filtration</topic><topic>Glucose</topic><topic>Learning</topic><topic>machine learning</topic><topic>Manganese</topic><topic>Progressions</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Wonsuk</creatorcontrib><creatorcontrib>Steinbach, Michael S.</creatorcontrib><creatorcontrib>Castro, M. Regina</creatorcontrib><creatorcontrib>Peterson, Kevin A.</creatorcontrib><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Caraballo, Pedro J.</creatorcontrib><creatorcontrib>Simon, Gyorgy J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh, Wonsuk</au><au>Steinbach, Michael S.</au><au>Castro, M. Regina</au><au>Peterson, Kevin A.</au><au>Kumar, Vipin</au><au>Caraballo, Pedro J.</au><au>Simon, Gyorgy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Method for Learning Disease Trajectories From Partially Observable EHR Data</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>25</volume><issue>7</issue><spage>2476</spage><epage>2486</epage><pages>2476-2486</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Diseases can show different courses of progression even when patients share the same risk factors. Recent studies have revealed that the use of trajectories, the order in which diseases manifest throughout life, can be predictive of the course of progression. In this study, we propose a novel computational method for learning disease trajectories from EHR data. The proposed method consists of three parts: first, we propose an algorithm for extracting trajectories from EHR data; second, three criteria for filtering trajectories; and third, a likelihood function for assessing the risk of developing a set of outcomes given a trajectory set. We applied our methods to extract a set of disease trajectories from Mayo Clinic EHR data and evaluated it internally based on log-likelihood, which can be interpreted as the trajectories' ability to explain the observed (partial) disease progressions. We then externally evaluated the trajectories on EHR data from an independent health system, M Health Fairview. The proposed algorithm extracted a comprehensive set of disease trajectories that can explain the observed outcomes substantially better than competing methods and the proposed filtering criteria selected a small subset of disease trajectories that are highly interpretable and suffered only a minimal (relative 5%) loss of the ability to explain disease progression in both the internal and external validation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>34129510</pmid><doi>10.1109/JBHI.2021.3089441</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0874-5026</orcidid><orcidid>https://orcid.org/0000-0002-7309-6395</orcidid><orcidid>https://orcid.org/0000-0001-9050-7080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2021-07, Vol.25 (7), p.2476-2486
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_9456038
source IEEE Electronic Library (IEL)
subjects Algorithms
Bioinformatics
Computer applications
Criteria
Data mining
Diabetes
Disease
Disease trajectories
Diseases
electronic health records
Evaluation
Filtration
Glucose
Learning
machine learning
Manganese
Progressions
Risk analysis
Risk factors
Trajectory
Trajectory analysis
title A Computational Method for Learning Disease Trajectories From Partially Observable EHR Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Method%20for%20Learning%20Disease%20Trajectories%20From%20Partially%20Observable%20EHR%20Data&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Oh,%20Wonsuk&rft.date=2021-07-01&rft.volume=25&rft.issue=7&rft.spage=2476&rft.epage=2486&rft.pages=2476-2486&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3089441&rft_dat=%3Cproquest_RIE%3E2555725654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555725654&rft_id=info:pmid/34129510&rft_ieee_id=9456038&rfr_iscdi=true