Distribution Network Reconfiguration Based on NoisyNet Deep Q-Learning Network

The distribution network reconfiguration (DNR) aims at minimizing the power losses and improving the voltage profile. Traditional model-based methods exactly need the network parameters to derive the optimal configuration of the distribution network. This paper proposes a DNR method based on model-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.90358-90365
Hauptverfasser: Wang, Beibei, Zhu, Hong, Xu, Honghua, Bao, Yuqing, Di, Huifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The distribution network reconfiguration (DNR) aims at minimizing the power losses and improving the voltage profile. Traditional model-based methods exactly need the network parameters to derive the optimal configuration of the distribution network. This paper proposes a DNR method based on model-free reinforcement learning (RL) approach. The proposed method adopts NoisyNet deep Q-learning network (DQN), by which the exploration can be automatically realized without need of tuning the exploration parameters, in order to accelerate the training process and improve the optimization performance. The proposed method is validated by the simulation results.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3089625