Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning

The rapid increase of diverse Internet of Things (IoT) services and devices has raised numerous challenges in terms of connectivity, interoperability, and security. The heterogeneity of the networks, devices, and services introduces serious vulnerabilities to security, especially distributed denial-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2022-06, Vol.16 (2), p.1-10
Hauptverfasser: Dao, Nhu-Ngoc, V. Phan, Trung, Sa'ad, Umar, Kim, Joongheon, Bauschert, Thomas, Do, Dinh-Thuan, Cho, Sungrae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2
container_start_page 1
container_title IEEE systems journal
container_volume 16
creator Dao, Nhu-Ngoc
V. Phan, Trung
Sa'ad, Umar
Kim, Joongheon
Bauschert, Thomas
Do, Dinh-Thuan
Cho, Sungrae
description The rapid increase of diverse Internet of Things (IoT) services and devices has raised numerous challenges in terms of connectivity, interoperability, and security. The heterogeneity of the networks, devices, and services introduces serious vulnerabilities to security, especially distributed denial-of-service (DDoS) attacks, which exploit massive IoT devices to exhaust both network and victim resources. As such, this article proposes FOGshield, which is a localized DDoS prevention framework leveraging the federated computing power of the fog computing-based access networks to deploy multiple smart endpoint defenders at the border of relevant attack-source/destination networks. Cooperation among the smart endpoint defenders is supervised by a central orchestrator. The central orchestrator localizes each smart endpoint defender by feeding appropriate training parameters into its self-organizing map component, based on the attacking behavior. Performance of the FOGshield framework is verified using three typical IoT traffic scenarios. Numerical results reveal that the FOGshield outperforms existing solutions.
doi_str_mv 10.1109/JSYST.2021.3084199
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9451655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9451655</ieee_id><sourcerecordid>2676778880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a9848bb8a2a2ca20d3e1a8ec21e9699d085037f0bb62f1a5a93a3075cb8c57d43</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjzi2l6U8GlSJRYoQK8txJ21KiYvjIPH3pA-xmtHonjvSQeiakhGlRN-9FB_FfMQIoyNOVEq1PkEDqrlMNOPp6X5niaIqPUcXbbsmRCgh9QDlBbgu1M0STyFC8EtowHctzv0cv9dxhfMmwmZT9_eIHx58gccxWveJ72Flf2of8AxsaPqCS3RW2U0LV8c5RG9Pj_PJNJm9PueT8SxxTIuYWK1SVZbKMsucZWTBgVoFjlHQmdYLogThsiJlmbGKWmE1t5xI4UrlhFykfIhuD73b4L87aKNZ-y40_UvDMplJqZQifYodUi74tg1QmW2ov2z4NZSYnTKzV2Z2ysxRWQ_dHKAaAP4BnQqaCcH_AIj5Z34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676778880</pqid></control><display><type>article</type><title>Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Dao, Nhu-Ngoc ; V. Phan, Trung ; Sa'ad, Umar ; Kim, Joongheon ; Bauschert, Thomas ; Do, Dinh-Thuan ; Cho, Sungrae</creator><creatorcontrib>Dao, Nhu-Ngoc ; V. Phan, Trung ; Sa'ad, Umar ; Kim, Joongheon ; Bauschert, Thomas ; Do, Dinh-Thuan ; Cho, Sungrae</creatorcontrib><description>The rapid increase of diverse Internet of Things (IoT) services and devices has raised numerous challenges in terms of connectivity, interoperability, and security. The heterogeneity of the networks, devices, and services introduces serious vulnerabilities to security, especially distributed denial-of-service (DDoS) attacks, which exploit massive IoT devices to exhaust both network and victim resources. As such, this article proposes FOGshield, which is a localized DDoS prevention framework leveraging the federated computing power of the fog computing-based access networks to deploy multiple smart endpoint defenders at the border of relevant attack-source/destination networks. Cooperation among the smart endpoint defenders is supervised by a central orchestrator. The central orchestrator localizes each smart endpoint defender by feeding appropriate training parameters into its self-organizing map component, based on the attacking behavior. Performance of the FOGshield framework is verified using three typical IoT traffic scenarios. Numerical results reveal that the FOGshield outperforms existing solutions.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2021.3084199</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Botnet ; Cloud computing ; Computer crime ; Cybersecurity ; defense framework ; Denial of service attacks ; Denial-of-service attack ; Distributed denial-of-service (DDoS) attack ; Heterogeneity ; heterogeneous Internet of Things (HIoT) ; Internet of Things ; Networks ; Neurons ; Protocols ; Security ; Self organizing maps ; self-organizing map (SOM) ; Training</subject><ispartof>IEEE systems journal, 2022-06, Vol.16 (2), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a9848bb8a2a2ca20d3e1a8ec21e9699d085037f0bb62f1a5a93a3075cb8c57d43</citedby><cites>FETCH-LOGICAL-c295t-a9848bb8a2a2ca20d3e1a8ec21e9699d085037f0bb62f1a5a93a3075cb8c57d43</cites><orcidid>0000-0003-2126-768X ; 0000-0003-1565-4376 ; 0000-0001-9166-3210 ; 0000-0003-1879-688X ; 0000-0002-4018-0275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9451655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9451655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dao, Nhu-Ngoc</creatorcontrib><creatorcontrib>V. Phan, Trung</creatorcontrib><creatorcontrib>Sa'ad, Umar</creatorcontrib><creatorcontrib>Kim, Joongheon</creatorcontrib><creatorcontrib>Bauschert, Thomas</creatorcontrib><creatorcontrib>Do, Dinh-Thuan</creatorcontrib><creatorcontrib>Cho, Sungrae</creatorcontrib><title>Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>The rapid increase of diverse Internet of Things (IoT) services and devices has raised numerous challenges in terms of connectivity, interoperability, and security. The heterogeneity of the networks, devices, and services introduces serious vulnerabilities to security, especially distributed denial-of-service (DDoS) attacks, which exploit massive IoT devices to exhaust both network and victim resources. As such, this article proposes FOGshield, which is a localized DDoS prevention framework leveraging the federated computing power of the fog computing-based access networks to deploy multiple smart endpoint defenders at the border of relevant attack-source/destination networks. Cooperation among the smart endpoint defenders is supervised by a central orchestrator. The central orchestrator localizes each smart endpoint defender by feeding appropriate training parameters into its self-organizing map component, based on the attacking behavior. Performance of the FOGshield framework is verified using three typical IoT traffic scenarios. Numerical results reveal that the FOGshield outperforms existing solutions.</description><subject>Botnet</subject><subject>Cloud computing</subject><subject>Computer crime</subject><subject>Cybersecurity</subject><subject>defense framework</subject><subject>Denial of service attacks</subject><subject>Denial-of-service attack</subject><subject>Distributed denial-of-service (DDoS) attack</subject><subject>Heterogeneity</subject><subject>heterogeneous Internet of Things (HIoT)</subject><subject>Internet of Things</subject><subject>Networks</subject><subject>Neurons</subject><subject>Protocols</subject><subject>Security</subject><subject>Self organizing maps</subject><subject>self-organizing map (SOM)</subject><subject>Training</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjzi2l6U8GlSJRYoQK8txJ21KiYvjIPH3pA-xmtHonjvSQeiakhGlRN-9FB_FfMQIoyNOVEq1PkEDqrlMNOPp6X5niaIqPUcXbbsmRCgh9QDlBbgu1M0STyFC8EtowHctzv0cv9dxhfMmwmZT9_eIHx58gccxWveJ72Flf2of8AxsaPqCS3RW2U0LV8c5RG9Pj_PJNJm9PueT8SxxTIuYWK1SVZbKMsucZWTBgVoFjlHQmdYLogThsiJlmbGKWmE1t5xI4UrlhFykfIhuD73b4L87aKNZ-y40_UvDMplJqZQifYodUi74tg1QmW2ov2z4NZSYnTKzV2Z2ysxRWQ_dHKAaAP4BnQqaCcH_AIj5Z34</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Dao, Nhu-Ngoc</creator><creator>V. Phan, Trung</creator><creator>Sa'ad, Umar</creator><creator>Kim, Joongheon</creator><creator>Bauschert, Thomas</creator><creator>Do, Dinh-Thuan</creator><creator>Cho, Sungrae</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2126-768X</orcidid><orcidid>https://orcid.org/0000-0003-1565-4376</orcidid><orcidid>https://orcid.org/0000-0001-9166-3210</orcidid><orcidid>https://orcid.org/0000-0003-1879-688X</orcidid><orcidid>https://orcid.org/0000-0002-4018-0275</orcidid></search><sort><creationdate>20220601</creationdate><title>Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning</title><author>Dao, Nhu-Ngoc ; V. Phan, Trung ; Sa'ad, Umar ; Kim, Joongheon ; Bauschert, Thomas ; Do, Dinh-Thuan ; Cho, Sungrae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a9848bb8a2a2ca20d3e1a8ec21e9699d085037f0bb62f1a5a93a3075cb8c57d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Botnet</topic><topic>Cloud computing</topic><topic>Computer crime</topic><topic>Cybersecurity</topic><topic>defense framework</topic><topic>Denial of service attacks</topic><topic>Denial-of-service attack</topic><topic>Distributed denial-of-service (DDoS) attack</topic><topic>Heterogeneity</topic><topic>heterogeneous Internet of Things (HIoT)</topic><topic>Internet of Things</topic><topic>Networks</topic><topic>Neurons</topic><topic>Protocols</topic><topic>Security</topic><topic>Self organizing maps</topic><topic>self-organizing map (SOM)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dao, Nhu-Ngoc</creatorcontrib><creatorcontrib>V. Phan, Trung</creatorcontrib><creatorcontrib>Sa'ad, Umar</creatorcontrib><creatorcontrib>Kim, Joongheon</creatorcontrib><creatorcontrib>Bauschert, Thomas</creatorcontrib><creatorcontrib>Do, Dinh-Thuan</creatorcontrib><creatorcontrib>Cho, Sungrae</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dao, Nhu-Ngoc</au><au>V. Phan, Trung</au><au>Sa'ad, Umar</au><au>Kim, Joongheon</au><au>Bauschert, Thomas</au><au>Do, Dinh-Thuan</au><au>Cho, Sungrae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>The rapid increase of diverse Internet of Things (IoT) services and devices has raised numerous challenges in terms of connectivity, interoperability, and security. The heterogeneity of the networks, devices, and services introduces serious vulnerabilities to security, especially distributed denial-of-service (DDoS) attacks, which exploit massive IoT devices to exhaust both network and victim resources. As such, this article proposes FOGshield, which is a localized DDoS prevention framework leveraging the federated computing power of the fog computing-based access networks to deploy multiple smart endpoint defenders at the border of relevant attack-source/destination networks. Cooperation among the smart endpoint defenders is supervised by a central orchestrator. The central orchestrator localizes each smart endpoint defender by feeding appropriate training parameters into its self-organizing map component, based on the attacking behavior. Performance of the FOGshield framework is verified using three typical IoT traffic scenarios. Numerical results reveal that the FOGshield outperforms existing solutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2021.3084199</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2126-768X</orcidid><orcidid>https://orcid.org/0000-0003-1565-4376</orcidid><orcidid>https://orcid.org/0000-0001-9166-3210</orcidid><orcidid>https://orcid.org/0000-0003-1879-688X</orcidid><orcidid>https://orcid.org/0000-0002-4018-0275</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2022-06, Vol.16 (2), p.1-10
issn 1932-8184
1937-9234
language eng
recordid cdi_ieee_primary_9451655
source IEEE Electronic Library (IEL)
subjects Botnet
Cloud computing
Computer crime
Cybersecurity
defense framework
Denial of service attacks
Denial-of-service attack
Distributed denial-of-service (DDoS) attack
Heterogeneity
heterogeneous Internet of Things (HIoT)
Internet of Things
Networks
Neurons
Protocols
Security
Self organizing maps
self-organizing map (SOM)
Training
title Securing Heterogeneous IoT With Intelligent DDoS Attack Behavior Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Securing%20Heterogeneous%20IoT%20With%20Intelligent%20DDoS%20Attack%20Behavior%20Learning&rft.jtitle=IEEE%20systems%20journal&rft.au=Dao,%20Nhu-Ngoc&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2021.3084199&rft_dat=%3Cproquest_RIE%3E2676778880%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676778880&rft_id=info:pmid/&rft_ieee_id=9451655&rfr_iscdi=true