SEIR Subregion Model Analysis: a case study of Curitiba

The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2021-06, Vol.19 (6), p.1050-1056
Hauptverfasser: Spengler, Hellen Cristina, Valentim Loch, Gustavo, Tadeu Scarpin, Cassius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1056
container_issue 6
container_start_page 1050
container_title Revista IEEE América Latina
container_volume 19
creator Spengler, Hellen Cristina
Valentim Loch, Gustavo
Tadeu Scarpin, Cassius
description The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system.
doi_str_mv 10.1109/TLA.2021.9451251
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9451251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9451251</ieee_id><sourcerecordid>2539969602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-2b8f63d62c21c1eda9b9d02ce18ff8222de516185017bd7cbd9677bdc9c047553</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOKd3wUvAc2vea5Mm3saYOqgIbp5DmqTSMdeZtIf993Z0iqf3g_f9Ho-PkFtgKQBTD-tyliJDSFXOATmckQnwXCZMKTz_ly_JVYwbxjIpZDYhxWqxfKervgr-s2l39LV1fktnO7M9xCY-UkOtiZ7GrncH2tZ03oemaypzTS5qs43-5jSn5ONpsZ6_JOXb83I-KxOLed4lWMlaZE6gRbDgnVGVcgytB1nXEhGd5yBAcgZF5QpbOSWKIVllWV5wnk3J_Xh3H9rv3sdOb9o-DO9FjTxTSijBcKDYSNnQxhh8rfeh-TLhoIHpox496NFHPfqkZ6jcjZXGe_-H_25_AJwfXqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539969602</pqid></control><display><type>article</type><title>SEIR Subregion Model Analysis: a case study of Curitiba</title><source>IEEE Electronic Library (IEL)</source><creator>Spengler, Hellen Cristina ; Valentim Loch, Gustavo ; Tadeu Scarpin, Cassius</creator><creatorcontrib>Spengler, Hellen Cristina ; Valentim Loch, Gustavo ; Tadeu Scarpin, Cassius</creatorcontrib><description>The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2021.9451251</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Analytical models ; Coronaviruses ; COVID-19 ; epidemic models ; health system ; hospital capacity ; Hospitals ; IEEE transactions ; Mathematical models ; SEIR models ; Severe acute respiratory syndrome coronavirus 2 ; Solid modeling ; subregion models ; Urban areas ; Viral diseases</subject><ispartof>Revista IEEE América Latina, 2021-06, Vol.19 (6), p.1050-1056</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1663-1619 ; 0000-0002-6672-8139 ; 0000-0002-1130-2448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9451251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9451251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spengler, Hellen Cristina</creatorcontrib><creatorcontrib>Valentim Loch, Gustavo</creatorcontrib><creatorcontrib>Tadeu Scarpin, Cassius</creatorcontrib><title>SEIR Subregion Model Analysis: a case study of Curitiba</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system.</description><subject>Analytical models</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>epidemic models</subject><subject>health system</subject><subject>hospital capacity</subject><subject>Hospitals</subject><subject>IEEE transactions</subject><subject>Mathematical models</subject><subject>SEIR models</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Solid modeling</subject><subject>subregion models</subject><subject>Urban areas</subject><subject>Viral diseases</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUh4MoOKd3wUvAc2vea5Mm3saYOqgIbp5DmqTSMdeZtIf993Z0iqf3g_f9Ho-PkFtgKQBTD-tyliJDSFXOATmckQnwXCZMKTz_ly_JVYwbxjIpZDYhxWqxfKervgr-s2l39LV1fktnO7M9xCY-UkOtiZ7GrncH2tZ03oemaypzTS5qs43-5jSn5ONpsZ6_JOXb83I-KxOLed4lWMlaZE6gRbDgnVGVcgytB1nXEhGd5yBAcgZF5QpbOSWKIVllWV5wnk3J_Xh3H9rv3sdOb9o-DO9FjTxTSijBcKDYSNnQxhh8rfeh-TLhoIHpox496NFHPfqkZ6jcjZXGe_-H_25_AJwfXqA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Spengler, Hellen Cristina</creator><creator>Valentim Loch, Gustavo</creator><creator>Tadeu Scarpin, Cassius</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1663-1619</orcidid><orcidid>https://orcid.org/0000-0002-6672-8139</orcidid><orcidid>https://orcid.org/0000-0002-1130-2448</orcidid></search><sort><creationdate>20210601</creationdate><title>SEIR Subregion Model Analysis: a case study of Curitiba</title><author>Spengler, Hellen Cristina ; Valentim Loch, Gustavo ; Tadeu Scarpin, Cassius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-2b8f63d62c21c1eda9b9d02ce18ff8222de516185017bd7cbd9677bdc9c047553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>epidemic models</topic><topic>health system</topic><topic>hospital capacity</topic><topic>Hospitals</topic><topic>IEEE transactions</topic><topic>Mathematical models</topic><topic>SEIR models</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Solid modeling</topic><topic>subregion models</topic><topic>Urban areas</topic><topic>Viral diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Spengler, Hellen Cristina</creatorcontrib><creatorcontrib>Valentim Loch, Gustavo</creatorcontrib><creatorcontrib>Tadeu Scarpin, Cassius</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spengler, Hellen Cristina</au><au>Valentim Loch, Gustavo</au><au>Tadeu Scarpin, Cassius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEIR Subregion Model Analysis: a case study of Curitiba</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>19</volume><issue>6</issue><spage>1050</spage><epage>1056</epage><pages>1050-1056</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2021.9451251</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1663-1619</orcidid><orcidid>https://orcid.org/0000-0002-6672-8139</orcidid><orcidid>https://orcid.org/0000-0002-1130-2448</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2021-06, Vol.19 (6), p.1050-1056
issn 1548-0992
1548-0992
language eng
recordid cdi_ieee_primary_9451251
source IEEE Electronic Library (IEL)
subjects Analytical models
Coronaviruses
COVID-19
epidemic models
health system
hospital capacity
Hospitals
IEEE transactions
Mathematical models
SEIR models
Severe acute respiratory syndrome coronavirus 2
Solid modeling
subregion models
Urban areas
Viral diseases
title SEIR Subregion Model Analysis: a case study of Curitiba
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEIR%20Subregion%20Model%20Analysis:%20a%20case%20study%20of%20Curitiba&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Spengler,%20Hellen%20Cristina&rft.date=2021-06-01&rft.volume=19&rft.issue=6&rft.spage=1050&rft.epage=1056&rft.pages=1050-1056&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2021.9451251&rft_dat=%3Cproquest_RIE%3E2539969602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539969602&rft_id=info:pmid/&rft_ieee_id=9451251&rfr_iscdi=true