SEIR Subregion Model Analysis: a case study of Curitiba
The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely propo...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2021-06, Vol.19 (6), p.1050-1056 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1056 |
---|---|
container_issue | 6 |
container_start_page | 1050 |
container_title | Revista IEEE América Latina |
container_volume | 19 |
creator | Spengler, Hellen Cristina Valentim Loch, Gustavo Tadeu Scarpin, Cassius |
description | The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system. |
doi_str_mv | 10.1109/TLA.2021.9451251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9451251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9451251</ieee_id><sourcerecordid>2539969602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-2b8f63d62c21c1eda9b9d02ce18ff8222de516185017bd7cbd9677bdc9c047553</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOKd3wUvAc2vea5Mm3saYOqgIbp5DmqTSMdeZtIf993Z0iqf3g_f9Ho-PkFtgKQBTD-tyliJDSFXOATmckQnwXCZMKTz_ly_JVYwbxjIpZDYhxWqxfKervgr-s2l39LV1fktnO7M9xCY-UkOtiZ7GrncH2tZ03oemaypzTS5qs43-5jSn5ONpsZ6_JOXb83I-KxOLed4lWMlaZE6gRbDgnVGVcgytB1nXEhGd5yBAcgZF5QpbOSWKIVllWV5wnk3J_Xh3H9rv3sdOb9o-DO9FjTxTSijBcKDYSNnQxhh8rfeh-TLhoIHpox496NFHPfqkZ6jcjZXGe_-H_25_AJwfXqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539969602</pqid></control><display><type>article</type><title>SEIR Subregion Model Analysis: a case study of Curitiba</title><source>IEEE Electronic Library (IEL)</source><creator>Spengler, Hellen Cristina ; Valentim Loch, Gustavo ; Tadeu Scarpin, Cassius</creator><creatorcontrib>Spengler, Hellen Cristina ; Valentim Loch, Gustavo ; Tadeu Scarpin, Cassius</creatorcontrib><description>The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2021.9451251</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Analytical models ; Coronaviruses ; COVID-19 ; epidemic models ; health system ; hospital capacity ; Hospitals ; IEEE transactions ; Mathematical models ; SEIR models ; Severe acute respiratory syndrome coronavirus 2 ; Solid modeling ; subregion models ; Urban areas ; Viral diseases</subject><ispartof>Revista IEEE América Latina, 2021-06, Vol.19 (6), p.1050-1056</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1663-1619 ; 0000-0002-6672-8139 ; 0000-0002-1130-2448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9451251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9451251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spengler, Hellen Cristina</creatorcontrib><creatorcontrib>Valentim Loch, Gustavo</creatorcontrib><creatorcontrib>Tadeu Scarpin, Cassius</creatorcontrib><title>SEIR Subregion Model Analysis: a case study of Curitiba</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system.</description><subject>Analytical models</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>epidemic models</subject><subject>health system</subject><subject>hospital capacity</subject><subject>Hospitals</subject><subject>IEEE transactions</subject><subject>Mathematical models</subject><subject>SEIR models</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Solid modeling</subject><subject>subregion models</subject><subject>Urban areas</subject><subject>Viral diseases</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUh4MoOKd3wUvAc2vea5Mm3saYOqgIbp5DmqTSMdeZtIf993Z0iqf3g_f9Ho-PkFtgKQBTD-tyliJDSFXOATmckQnwXCZMKTz_ly_JVYwbxjIpZDYhxWqxfKervgr-s2l39LV1fktnO7M9xCY-UkOtiZ7GrncH2tZ03oemaypzTS5qs43-5jSn5ONpsZ6_JOXb83I-KxOLed4lWMlaZE6gRbDgnVGVcgytB1nXEhGd5yBAcgZF5QpbOSWKIVllWV5wnk3J_Xh3H9rv3sdOb9o-DO9FjTxTSijBcKDYSNnQxhh8rfeh-TLhoIHpox496NFHPfqkZ6jcjZXGe_-H_25_AJwfXqA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Spengler, Hellen Cristina</creator><creator>Valentim Loch, Gustavo</creator><creator>Tadeu Scarpin, Cassius</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1663-1619</orcidid><orcidid>https://orcid.org/0000-0002-6672-8139</orcidid><orcidid>https://orcid.org/0000-0002-1130-2448</orcidid></search><sort><creationdate>20210601</creationdate><title>SEIR Subregion Model Analysis: a case study of Curitiba</title><author>Spengler, Hellen Cristina ; Valentim Loch, Gustavo ; Tadeu Scarpin, Cassius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-2b8f63d62c21c1eda9b9d02ce18ff8222de516185017bd7cbd9677bdc9c047553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>epidemic models</topic><topic>health system</topic><topic>hospital capacity</topic><topic>Hospitals</topic><topic>IEEE transactions</topic><topic>Mathematical models</topic><topic>SEIR models</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Solid modeling</topic><topic>subregion models</topic><topic>Urban areas</topic><topic>Viral diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Spengler, Hellen Cristina</creatorcontrib><creatorcontrib>Valentim Loch, Gustavo</creatorcontrib><creatorcontrib>Tadeu Scarpin, Cassius</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spengler, Hellen Cristina</au><au>Valentim Loch, Gustavo</au><au>Tadeu Scarpin, Cassius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEIR Subregion Model Analysis: a case study of Curitiba</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>19</volume><issue>6</issue><spage>1050</spage><epage>1056</epage><pages>1050-1056</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The novel coronavirus SARS-CoV-2 was identified first in December of 2019, in Wuhan City, China. In a short period, thousands of infectious cases were reported in the world, and the hospital capacity was exceeded or saturated in some countries. For this reason, mathematical models were largely proposed to estimate the progression of Covid-19 pandemic and its impact on decisions to mitigate this progression. This paper proposes a modified Susceptible Exposed Infectious Recovered (SEIR) model to describe the behavior of the Covid-19 epidemic, based on characteristics of subregions. It was applied in data of the city of Curitiba, Brazil, and showed the best and worst scenarios to estimate the saturate and exceeded states on the health system.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2021.9451251</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1663-1619</orcidid><orcidid>https://orcid.org/0000-0002-6672-8139</orcidid><orcidid>https://orcid.org/0000-0002-1130-2448</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2021-06, Vol.19 (6), p.1050-1056 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_ieee_primary_9451251 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Coronaviruses COVID-19 epidemic models health system hospital capacity Hospitals IEEE transactions Mathematical models SEIR models Severe acute respiratory syndrome coronavirus 2 Solid modeling subregion models Urban areas Viral diseases |
title | SEIR Subregion Model Analysis: a case study of Curitiba |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEIR%20Subregion%20Model%20Analysis:%20a%20case%20study%20of%20Curitiba&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Spengler,%20Hellen%20Cristina&rft.date=2021-06-01&rft.volume=19&rft.issue=6&rft.spage=1050&rft.epage=1056&rft.pages=1050-1056&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2021.9451251&rft_dat=%3Cproquest_RIE%3E2539969602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539969602&rft_id=info:pmid/&rft_ieee_id=9451251&rfr_iscdi=true |