Differentiator for Noisy Sampled Signals With Best Worst-Case Accuracy
This letter proposes a differentiator for sampled signals with bounded noise and bounded second derivative. It is based on a linear program derived from the available sample information and requires no further tuning beyond the noise and derivative bounds. A tight bound on the worst-case accuracy, i...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2022, Vol.6, p.938-943 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 943 |
---|---|
container_issue | |
container_start_page | 938 |
container_title | IEEE control systems letters |
container_volume | 6 |
creator | Haimovich, Hernan Seeber, Richard Aldana-Lopez, Rodrigo Gomez-Gutierrez, David |
description | This letter proposes a differentiator for sampled signals with bounded noise and bounded second derivative. It is based on a linear program derived from the available sample information and requires no further tuning beyond the noise and derivative bounds. A tight bound on the worst-case accuracy, i.e., the worst-case differentiation error, is derived, which is the best among all causal differentiators and is moreover shown to be obtained after a fixed number of sampling steps. Comparisons with the accuracy of existing high-gain and sliding-mode differentiators illustrate the obtained results. |
doi_str_mv | 10.1109/LCSYS.2021.3087542 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9448332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9448332</ieee_id><sourcerecordid>10_1109_LCSYS_2021_3087542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-7bed280d7f7288f6969d68d21c5bbff91b3c12839038646096f0beaa516daaa63</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EElXpC8DiF0i5vk78M5ZAC1IEQ0AVU-Q4Nhi1TWWHoW9PSyvEcHXucL4zfIRcM5gyBvq2Kuv3eoqAbMpBySLHMzLCXBYZywtx_u-_JJOUvgCAKZSAekTm98F7F91mCGboI_X7e-5D2tHarLcr19E6fGzMKtFlGD7pnUsDXfYxDVlpkqMza7-jsbsrcuH3JTc55Zi8zR9ey8eselk8lbMqsyjkkMnWdaigk16iUl5ooTuhOmS2aFvvNWu5Zai4Bq5ELkALD60zpmCiM8YIPiZ43LWxTyk632xjWJu4axg0BxnNr4zmIKM5ydhDN0coOOf-AJ3ninPkPyZNWwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Differentiator for Noisy Sampled Signals With Best Worst-Case Accuracy</title><source>IEEE Electronic Library (IEL)</source><creator>Haimovich, Hernan ; Seeber, Richard ; Aldana-Lopez, Rodrigo ; Gomez-Gutierrez, David</creator><creatorcontrib>Haimovich, Hernan ; Seeber, Richard ; Aldana-Lopez, Rodrigo ; Gomez-Gutierrez, David</creatorcontrib><description>This letter proposes a differentiator for sampled signals with bounded noise and bounded second derivative. It is based on a linear program derived from the available sample information and requires no further tuning beyond the noise and derivative bounds. A tight bound on the worst-case accuracy, i.e., the worst-case differentiation error, is derived, which is the best among all causal differentiators and is moreover shown to be obtained after a fixed number of sampling steps. Comparisons with the accuracy of existing high-gain and sliding-mode differentiators illustrate the obtained results.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2021.3087542</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Differentiation ; Doppler effect ; estimation ; Noise measurement ; Observers ; Optimization ; Time measurement ; Tuning</subject><ispartof>IEEE control systems letters, 2022, Vol.6, p.938-943</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-7bed280d7f7288f6969d68d21c5bbff91b3c12839038646096f0beaa516daaa63</citedby><cites>FETCH-LOGICAL-c267t-7bed280d7f7288f6969d68d21c5bbff91b3c12839038646096f0beaa516daaa63</cites><orcidid>0000-0002-5926-1681 ; 0000-0001-6939-6523 ; 0000-0003-4430-5626 ; 0000-0002-2113-3369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9448332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9448332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haimovich, Hernan</creatorcontrib><creatorcontrib>Seeber, Richard</creatorcontrib><creatorcontrib>Aldana-Lopez, Rodrigo</creatorcontrib><creatorcontrib>Gomez-Gutierrez, David</creatorcontrib><title>Differentiator for Noisy Sampled Signals With Best Worst-Case Accuracy</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter proposes a differentiator for sampled signals with bounded noise and bounded second derivative. It is based on a linear program derived from the available sample information and requires no further tuning beyond the noise and derivative bounds. A tight bound on the worst-case accuracy, i.e., the worst-case differentiation error, is derived, which is the best among all causal differentiators and is moreover shown to be obtained after a fixed number of sampling steps. Comparisons with the accuracy of existing high-gain and sliding-mode differentiators illustrate the obtained results.</description><subject>Convergence</subject><subject>Differentiation</subject><subject>Doppler effect</subject><subject>estimation</subject><subject>Noise measurement</subject><subject>Observers</subject><subject>Optimization</subject><subject>Time measurement</subject><subject>Tuning</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAUhS0EElXpC8DiF0i5vk78M5ZAC1IEQ0AVU-Q4Nhi1TWWHoW9PSyvEcHXucL4zfIRcM5gyBvq2Kuv3eoqAbMpBySLHMzLCXBYZywtx_u-_JJOUvgCAKZSAekTm98F7F91mCGboI_X7e-5D2tHarLcr19E6fGzMKtFlGD7pnUsDXfYxDVlpkqMza7-jsbsrcuH3JTc55Zi8zR9ey8eselk8lbMqsyjkkMnWdaigk16iUl5ooTuhOmS2aFvvNWu5Zai4Bq5ELkALD60zpmCiM8YIPiZ43LWxTyk632xjWJu4axg0BxnNr4zmIKM5ydhDN0coOOf-AJ3ninPkPyZNWwE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Haimovich, Hernan</creator><creator>Seeber, Richard</creator><creator>Aldana-Lopez, Rodrigo</creator><creator>Gomez-Gutierrez, David</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5926-1681</orcidid><orcidid>https://orcid.org/0000-0001-6939-6523</orcidid><orcidid>https://orcid.org/0000-0003-4430-5626</orcidid><orcidid>https://orcid.org/0000-0002-2113-3369</orcidid></search><sort><creationdate>2022</creationdate><title>Differentiator for Noisy Sampled Signals With Best Worst-Case Accuracy</title><author>Haimovich, Hernan ; Seeber, Richard ; Aldana-Lopez, Rodrigo ; Gomez-Gutierrez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-7bed280d7f7288f6969d68d21c5bbff91b3c12839038646096f0beaa516daaa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Differentiation</topic><topic>Doppler effect</topic><topic>estimation</topic><topic>Noise measurement</topic><topic>Observers</topic><topic>Optimization</topic><topic>Time measurement</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haimovich, Hernan</creatorcontrib><creatorcontrib>Seeber, Richard</creatorcontrib><creatorcontrib>Aldana-Lopez, Rodrigo</creatorcontrib><creatorcontrib>Gomez-Gutierrez, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haimovich, Hernan</au><au>Seeber, Richard</au><au>Aldana-Lopez, Rodrigo</au><au>Gomez-Gutierrez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiator for Noisy Sampled Signals With Best Worst-Case Accuracy</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2022</date><risdate>2022</risdate><volume>6</volume><spage>938</spage><epage>943</epage><pages>938-943</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter proposes a differentiator for sampled signals with bounded noise and bounded second derivative. It is based on a linear program derived from the available sample information and requires no further tuning beyond the noise and derivative bounds. A tight bound on the worst-case accuracy, i.e., the worst-case differentiation error, is derived, which is the best among all causal differentiators and is moreover shown to be obtained after a fixed number of sampling steps. Comparisons with the accuracy of existing high-gain and sliding-mode differentiators illustrate the obtained results.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2021.3087542</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5926-1681</orcidid><orcidid>https://orcid.org/0000-0001-6939-6523</orcidid><orcidid>https://orcid.org/0000-0003-4430-5626</orcidid><orcidid>https://orcid.org/0000-0002-2113-3369</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2022, Vol.6, p.938-943 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_ieee_primary_9448332 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Differentiation Doppler effect estimation Noise measurement Observers Optimization Time measurement Tuning |
title | Differentiator for Noisy Sampled Signals With Best Worst-Case Accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiator%20for%20Noisy%20Sampled%20Signals%20With%20Best%20Worst-Case%20Accuracy&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Haimovich,%20Hernan&rft.date=2022&rft.volume=6&rft.spage=938&rft.epage=943&rft.pages=938-943&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2021.3087542&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2021_3087542%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9448332&rfr_iscdi=true |