Decentralized Descent Optimization With Stochastic Gradient Signs for Device-to-Device Networks

We propose an algorithm for decentralized optimization in wireless device-to-device (D2D) networks of pervasive devices such as sensors or 5G handsets, in which the signs of stochastic gradient are used for descent steps. Our algorithm has the convergence rate of {O} (1/( nT )) in which {n} is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2021-09, Vol.10 (9), p.1939-1943
Hauptverfasser: Phuong, Tran Thi, Phong, Le Trieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1943
container_issue 9
container_start_page 1939
container_title IEEE wireless communications letters
container_volume 10
creator Phuong, Tran Thi
Phong, Le Trieu
description We propose an algorithm for decentralized optimization in wireless device-to-device (D2D) networks of pervasive devices such as sensors or 5G handsets, in which the signs of stochastic gradient are used for descent steps. Our algorithm has the convergence rate of {O} (1/( nT )) in which {n} is the number of devices and {T} is the number of learning iterations, saving the communication efficiency by at least 64 times when compared with previous results, and being relatively robust to unexpected errors of adversarial scaling in communication. Theoretical claims are verified by numerical results on a standard benchmark dataset.
doi_str_mv 10.1109/LWC.2021.3087156
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9448084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9448084</ieee_id><sourcerecordid>2570191825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6ebb73e6cb0881c485c579fceaac967935b4e9e2105f05dd6c97d0c49da775913</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOObeBV8KPncmadMkj7LpFIZ7mLLHkKZXl7k1M8kU99fb0rF7uTv4fnfwIXRL8JgQLB_mq8mYYkrGGRacsOICDSgpaEqznF2e54xfo1EIG9xWgQklYoDUFAw00eutPUKVTCF0a7LYR7uzRx2ta5KVjetkGZ1Z6xCtSWZeV7ajlvazCUntfJv7sQbS6NJ-St4g_jr_FW7QVa23AUanPkQfz0_vk5d0vpi9Th7nqaGSxLSAsuQZFKbEQhCTC2YYl7UBrY0suMxYmYMESjCrMauqwkheYZPLSnPOJMmG6L6_u_fu-wAhqo07-KZ9qSjjmEgiKGsp3FPGuxA81Grv7U77P0Ww6kyq1qTqTKqTyTZy10csAJxxmecCizz7BwUPb2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570191825</pqid></control><display><type>article</type><title>Decentralized Descent Optimization With Stochastic Gradient Signs for Device-to-Device Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Phuong, Tran Thi ; Phong, Le Trieu</creator><creatorcontrib>Phuong, Tran Thi ; Phong, Le Trieu</creatorcontrib><description><![CDATA[We propose an algorithm for decentralized optimization in wireless device-to-device (D2D) networks of pervasive devices such as sensors or 5G handsets, in which the signs of stochastic gradient are used for descent steps. Our algorithm has the convergence rate of <inline-formula> <tex-math notation="LaTeX">{O} </tex-math></inline-formula>(1/( nT )) in which <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> is the number of devices and <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> is the number of learning iterations, saving the communication efficiency by at least 64 times when compared with previous results, and being relatively robust to unexpected errors of adversarial scaling in communication. Theoretical claims are verified by numerical results on a standard benchmark dataset.]]></description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2021.3087156</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Benchmark testing ; communication efficiency ; Convergence ; D2D networks ; gradient descent ; Optimization ; Robustness ; Robustness (mathematics) ; Wireless communication ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE wireless communications letters, 2021-09, Vol.10 (9), p.1939-1943</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6ebb73e6cb0881c485c579fceaac967935b4e9e2105f05dd6c97d0c49da775913</citedby><cites>FETCH-LOGICAL-c291t-6ebb73e6cb0881c485c579fceaac967935b4e9e2105f05dd6c97d0c49da775913</cites><orcidid>0000-0002-0383-8891 ; 0000-0003-2219-1867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9448084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9448084$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phuong, Tran Thi</creatorcontrib><creatorcontrib>Phong, Le Trieu</creatorcontrib><title>Decentralized Descent Optimization With Stochastic Gradient Signs for Device-to-Device Networks</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description><![CDATA[We propose an algorithm for decentralized optimization in wireless device-to-device (D2D) networks of pervasive devices such as sensors or 5G handsets, in which the signs of stochastic gradient are used for descent steps. Our algorithm has the convergence rate of <inline-formula> <tex-math notation="LaTeX">{O} </tex-math></inline-formula>(1/( nT )) in which <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> is the number of devices and <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> is the number of learning iterations, saving the communication efficiency by at least 64 times when compared with previous results, and being relatively robust to unexpected errors of adversarial scaling in communication. Theoretical claims are verified by numerical results on a standard benchmark dataset.]]></description><subject>Algorithms</subject><subject>Benchmark testing</subject><subject>communication efficiency</subject><subject>Convergence</subject><subject>D2D networks</subject><subject>gradient descent</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4MoOObeBV8KPncmadMkj7LpFIZ7mLLHkKZXl7k1M8kU99fb0rF7uTv4fnfwIXRL8JgQLB_mq8mYYkrGGRacsOICDSgpaEqznF2e54xfo1EIG9xWgQklYoDUFAw00eutPUKVTCF0a7LYR7uzRx2ta5KVjetkGZ1Z6xCtSWZeV7ajlvazCUntfJv7sQbS6NJ-St4g_jr_FW7QVa23AUanPkQfz0_vk5d0vpi9Th7nqaGSxLSAsuQZFKbEQhCTC2YYl7UBrY0suMxYmYMESjCrMauqwkheYZPLSnPOJMmG6L6_u_fu-wAhqo07-KZ9qSjjmEgiKGsp3FPGuxA81Grv7U77P0Ww6kyq1qTqTKqTyTZy10csAJxxmecCizz7BwUPb2U</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Phuong, Tran Thi</creator><creator>Phong, Le Trieu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0383-8891</orcidid><orcidid>https://orcid.org/0000-0003-2219-1867</orcidid></search><sort><creationdate>20210901</creationdate><title>Decentralized Descent Optimization With Stochastic Gradient Signs for Device-to-Device Networks</title><author>Phuong, Tran Thi ; Phong, Le Trieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6ebb73e6cb0881c485c579fceaac967935b4e9e2105f05dd6c97d0c49da775913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Benchmark testing</topic><topic>communication efficiency</topic><topic>Convergence</topic><topic>D2D networks</topic><topic>gradient descent</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phuong, Tran Thi</creatorcontrib><creatorcontrib>Phong, Le Trieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phuong, Tran Thi</au><au>Phong, Le Trieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Descent Optimization With Stochastic Gradient Signs for Device-to-Device Networks</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>10</volume><issue>9</issue><spage>1939</spage><epage>1943</epage><pages>1939-1943</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract><![CDATA[We propose an algorithm for decentralized optimization in wireless device-to-device (D2D) networks of pervasive devices such as sensors or 5G handsets, in which the signs of stochastic gradient are used for descent steps. Our algorithm has the convergence rate of <inline-formula> <tex-math notation="LaTeX">{O} </tex-math></inline-formula>(1/( nT )) in which <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> is the number of devices and <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula> is the number of learning iterations, saving the communication efficiency by at least 64 times when compared with previous results, and being relatively robust to unexpected errors of adversarial scaling in communication. Theoretical claims are verified by numerical results on a standard benchmark dataset.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2021.3087156</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0383-8891</orcidid><orcidid>https://orcid.org/0000-0003-2219-1867</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2021-09, Vol.10 (9), p.1939-1943
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_9448084
source IEEE Electronic Library (IEL)
subjects Algorithms
Benchmark testing
communication efficiency
Convergence
D2D networks
gradient descent
Optimization
Robustness
Robustness (mathematics)
Wireless communication
Wireless networks
Wireless sensor networks
title Decentralized Descent Optimization With Stochastic Gradient Signs for Device-to-Device Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Descent%20Optimization%20With%20Stochastic%20Gradient%20Signs%20for%20Device-to-Device%20Networks&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Phuong,%20Tran%20Thi&rft.date=2021-09-01&rft.volume=10&rft.issue=9&rft.spage=1939&rft.epage=1943&rft.pages=1939-1943&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2021.3087156&rft_dat=%3Cproquest_RIE%3E2570191825%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570191825&rft_id=info:pmid/&rft_ieee_id=9448084&rfr_iscdi=true