An Interpretable Mapping From a Communication System to a Neural Network for Optimal Transceiver-Joint Equalization

In this paper, we propose a scheme that utilizes the optimization ability of artificial intelligence (AI) for optimal transceiver-joint equalization in compensating for the optical filtering impairments caused by wavelength selective switches (WSS). In contrast to adding or replacing a certain modul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-09, Vol.39 (17), p.5449-5458
Hauptverfasser: Zhai, Zhiqun, Jiang, Hexun, Fu, Mengfan, Liu, Lei, Yi, Lilin, Hu, Weisheng, Zhuge, Qunbi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5458
container_issue 17
container_start_page 5449
container_title Journal of lightwave technology
container_volume 39
creator Zhai, Zhiqun
Jiang, Hexun
Fu, Mengfan
Liu, Lei
Yi, Lilin
Hu, Weisheng
Zhuge, Qunbi
description In this paper, we propose a scheme that utilizes the optimization ability of artificial intelligence (AI) for optimal transceiver-joint equalization in compensating for the optical filtering impairments caused by wavelength selective switches (WSS). In contrast to adding or replacing a certain module of existing digital signal processing (DSP), we exploit the similarity between a communication system and a neural network (NN). By mapping a communication system to an NN, in which the equalization modules correspond to the convolutional layers and other modules can been regarded as static layers, the optimal transceiver-joint equalization coefficients can be obtained. In particular, the DSP structure of the communication system is not changed. Extensive numerical simulations are performed to validate the performance of the proposed method. For a 65 GBaud 16QAM signal, it can achieve a 0.76 dB gain when the number of WSSs is 16 with a -6 dB bandwidth of 73 GHz.
doi_str_mv 10.1109/JLT.2021.3086301
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9447958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447958</ieee_id><sourcerecordid>2572665980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-58cffa9394b82a2e1e088f4b8177a7bd22f679cad09cfb85b4a22ccc5c586aeb3</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbw08bzYj-22PRKCCkE5iOemW7pmkd0ubVeDf71FiKfJzLz3JvMD4BajEcZIPswXqxFBBI8oEgVF-AwMMGMiIwTTczBAnNJMcJJfgqsQNgjhPBd8AMK4hbM2Wt95G3W5tfBFd13dfsBH7xqo4cQ1Td_WRsfatfBtH6JtYHRp82p7r7epxG_nP2HlPFx2sW7SbOV1G4ytv6zP5q5uI5zuer2tf_5SrsFFpbfB3pzqELw_TleT52yxfJpNxovMUEpjxoSpKi2pzEtBNLHYIiGq1GDONS_XhFQFl0avkTRVKViZa0KMMcwwUWhb0iG4P-Z23u16G6LauN636aQijJOiYFKgpEJHlfEuBG8r1fn0hN8rjNQBrUpo1QGtOqFNlrujpbbW_stlnnPJBP0FpQR21g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572665980</pqid></control><display><type>article</type><title>An Interpretable Mapping From a Communication System to a Neural Network for Optimal Transceiver-Joint Equalization</title><source>IEEE Electronic Library (IEL)</source><creator>Zhai, Zhiqun ; Jiang, Hexun ; Fu, Mengfan ; Liu, Lei ; Yi, Lilin ; Hu, Weisheng ; Zhuge, Qunbi</creator><creatorcontrib>Zhai, Zhiqun ; Jiang, Hexun ; Fu, Mengfan ; Liu, Lei ; Yi, Lilin ; Hu, Weisheng ; Zhuge, Qunbi</creatorcontrib><description>In this paper, we propose a scheme that utilizes the optimization ability of artificial intelligence (AI) for optimal transceiver-joint equalization in compensating for the optical filtering impairments caused by wavelength selective switches (WSS). In contrast to adding or replacing a certain module of existing digital signal processing (DSP), we exploit the similarity between a communication system and a neural network (NN). By mapping a communication system to an NN, in which the equalization modules correspond to the convolutional layers and other modules can been regarded as static layers, the optimal transceiver-joint equalization coefficients can be obtained. In particular, the DSP structure of the communication system is not changed. Extensive numerical simulations are performed to validate the performance of the proposed method. For a 65 GBaud 16QAM signal, it can achieve a 0.76 dB gain when the number of WSSs is 16 with a -6 dB bandwidth of 73 GHz.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3086301</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Artificial intelligence ; Artificial neural networks ; Coherent transceiver ; Communication systems ; Communications systems ; Convolution ; Digital signal processing ; Equalization ; Finite impulse response filters ; Mapping ; Modules ; neural network ; Neural networks ; optical filtering impairments ; Optical transmitters ; Optimization ; Switches ; transceiver-joint equalization ; Transceivers</subject><ispartof>Journal of lightwave technology, 2021-09, Vol.39 (17), p.5449-5458</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-58cffa9394b82a2e1e088f4b8177a7bd22f679cad09cfb85b4a22ccc5c586aeb3</citedby><cites>FETCH-LOGICAL-c333t-58cffa9394b82a2e1e088f4b8177a7bd22f679cad09cfb85b4a22ccc5c586aeb3</cites><orcidid>0000-0002-2437-0220 ; 0000-0002-6168-2688 ; 0000-0002-6039-9063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9447958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai, Zhiqun</creatorcontrib><creatorcontrib>Jiang, Hexun</creatorcontrib><creatorcontrib>Fu, Mengfan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Yi, Lilin</creatorcontrib><creatorcontrib>Hu, Weisheng</creatorcontrib><creatorcontrib>Zhuge, Qunbi</creatorcontrib><title>An Interpretable Mapping From a Communication System to a Neural Network for Optimal Transceiver-Joint Equalization</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, we propose a scheme that utilizes the optimization ability of artificial intelligence (AI) for optimal transceiver-joint equalization in compensating for the optical filtering impairments caused by wavelength selective switches (WSS). In contrast to adding or replacing a certain module of existing digital signal processing (DSP), we exploit the similarity between a communication system and a neural network (NN). By mapping a communication system to an NN, in which the equalization modules correspond to the convolutional layers and other modules can been regarded as static layers, the optimal transceiver-joint equalization coefficients can be obtained. In particular, the DSP structure of the communication system is not changed. Extensive numerical simulations are performed to validate the performance of the proposed method. For a 65 GBaud 16QAM signal, it can achieve a 0.76 dB gain when the number of WSSs is 16 with a -6 dB bandwidth of 73 GHz.</description><subject>Adaptive filters</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Coherent transceiver</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Convolution</subject><subject>Digital signal processing</subject><subject>Equalization</subject><subject>Finite impulse response filters</subject><subject>Mapping</subject><subject>Modules</subject><subject>neural network</subject><subject>Neural networks</subject><subject>optical filtering impairments</subject><subject>Optical transmitters</subject><subject>Optimization</subject><subject>Switches</subject><subject>transceiver-joint equalization</subject><subject>Transceivers</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYjeTbw08bzYj-22PRKCCkE5iOemW7pmkd0ubVeDf71FiKfJzLz3JvMD4BajEcZIPswXqxFBBI8oEgVF-AwMMGMiIwTTczBAnNJMcJJfgqsQNgjhPBd8AMK4hbM2Wt95G3W5tfBFd13dfsBH7xqo4cQ1Td_WRsfatfBtH6JtYHRp82p7r7epxG_nP2HlPFx2sW7SbOV1G4ytv6zP5q5uI5zuer2tf_5SrsFFpbfB3pzqELw_TleT52yxfJpNxovMUEpjxoSpKi2pzEtBNLHYIiGq1GDONS_XhFQFl0avkTRVKViZa0KMMcwwUWhb0iG4P-Z23u16G6LauN636aQijJOiYFKgpEJHlfEuBG8r1fn0hN8rjNQBrUpo1QGtOqFNlrujpbbW_stlnnPJBP0FpQR21g</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhai, Zhiqun</creator><creator>Jiang, Hexun</creator><creator>Fu, Mengfan</creator><creator>Liu, Lei</creator><creator>Yi, Lilin</creator><creator>Hu, Weisheng</creator><creator>Zhuge, Qunbi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2437-0220</orcidid><orcidid>https://orcid.org/0000-0002-6168-2688</orcidid><orcidid>https://orcid.org/0000-0002-6039-9063</orcidid></search><sort><creationdate>20210901</creationdate><title>An Interpretable Mapping From a Communication System to a Neural Network for Optimal Transceiver-Joint Equalization</title><author>Zhai, Zhiqun ; Jiang, Hexun ; Fu, Mengfan ; Liu, Lei ; Yi, Lilin ; Hu, Weisheng ; Zhuge, Qunbi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-58cffa9394b82a2e1e088f4b8177a7bd22f679cad09cfb85b4a22ccc5c586aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive filters</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Coherent transceiver</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Convolution</topic><topic>Digital signal processing</topic><topic>Equalization</topic><topic>Finite impulse response filters</topic><topic>Mapping</topic><topic>Modules</topic><topic>neural network</topic><topic>Neural networks</topic><topic>optical filtering impairments</topic><topic>Optical transmitters</topic><topic>Optimization</topic><topic>Switches</topic><topic>transceiver-joint equalization</topic><topic>Transceivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Zhiqun</creatorcontrib><creatorcontrib>Jiang, Hexun</creatorcontrib><creatorcontrib>Fu, Mengfan</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Yi, Lilin</creatorcontrib><creatorcontrib>Hu, Weisheng</creatorcontrib><creatorcontrib>Zhuge, Qunbi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Zhiqun</au><au>Jiang, Hexun</au><au>Fu, Mengfan</au><au>Liu, Lei</au><au>Yi, Lilin</au><au>Hu, Weisheng</au><au>Zhuge, Qunbi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interpretable Mapping From a Communication System to a Neural Network for Optimal Transceiver-Joint Equalization</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>39</volume><issue>17</issue><spage>5449</spage><epage>5458</epage><pages>5449-5458</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, we propose a scheme that utilizes the optimization ability of artificial intelligence (AI) for optimal transceiver-joint equalization in compensating for the optical filtering impairments caused by wavelength selective switches (WSS). In contrast to adding or replacing a certain module of existing digital signal processing (DSP), we exploit the similarity between a communication system and a neural network (NN). By mapping a communication system to an NN, in which the equalization modules correspond to the convolutional layers and other modules can been regarded as static layers, the optimal transceiver-joint equalization coefficients can be obtained. In particular, the DSP structure of the communication system is not changed. Extensive numerical simulations are performed to validate the performance of the proposed method. For a 65 GBaud 16QAM signal, it can achieve a 0.76 dB gain when the number of WSSs is 16 with a -6 dB bandwidth of 73 GHz.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3086301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2437-0220</orcidid><orcidid>https://orcid.org/0000-0002-6168-2688</orcidid><orcidid>https://orcid.org/0000-0002-6039-9063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-09, Vol.39 (17), p.5449-5458
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_9447958
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Artificial intelligence
Artificial neural networks
Coherent transceiver
Communication systems
Communications systems
Convolution
Digital signal processing
Equalization
Finite impulse response filters
Mapping
Modules
neural network
Neural networks
optical filtering impairments
Optical transmitters
Optimization
Switches
transceiver-joint equalization
Transceivers
title An Interpretable Mapping From a Communication System to a Neural Network for Optimal Transceiver-Joint Equalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interpretable%20Mapping%20From%20a%20Communication%20System%20to%20a%20Neural%20Network%20for%20Optimal%20Transceiver-Joint%20Equalization&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Zhai,%20Zhiqun&rft.date=2021-09-01&rft.volume=39&rft.issue=17&rft.spage=5449&rft.epage=5458&rft.pages=5449-5458&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3086301&rft_dat=%3Cproquest_RIE%3E2572665980%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572665980&rft_id=info:pmid/&rft_ieee_id=9447958&rfr_iscdi=true