An Automatic Vehicle Avoidance Control Model for Dangerous Lane-Changing Behavior

This paper proposes a new avoidance control model for automatic vehicle in facing dangerous lane-changing behavior. Firstly, the new lane-changing probability factor based on Gaussian-mixture-based hidden Markov model is constructed to predict the lateral-vehicle lane-changing probability and output...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.8477-8487
Hauptverfasser: Cong, Sensen, Wang, Wensa, Liang, Jun, Chen, Long, Cai, Yingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8487
container_issue 7
container_start_page 8477
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Cong, Sensen
Wang, Wensa
Liang, Jun
Chen, Long
Cai, Yingfeng
description This paper proposes a new avoidance control model for automatic vehicle in facing dangerous lane-changing behavior. Firstly, the new lane-changing probability factor based on Gaussian-mixture-based hidden Markov model is constructed to predict the lateral-vehicle lane-changing probability and output the pre-control parameters. Secondly, the back propagation neural network avoidance model, which combined with driver's avoidance behavior, is developed for achieving the instantaneous collision avoidance control. Moreover, the optimal solution between control parameters and vehicle stability is obtained by using linear quadratic regulator. Finally, the accuracy of the avoidance model is verified by the semi-physical driver-in-the-loop simulation based on PreScan/Simulink. Results show that the automatic vehicle with the proposed avoidance model can accurately and effectively take pre-braking and micro-steering behavior. The proposed model can greatly reduce vehicle collision probability and effectively take both safety and comfort of collision avoidance into account. In addition, the robustness of the control model under different network penetration is discussed.
doi_str_mv 10.1109/TITS.2021.3082944
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9447293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447293</ieee_id><sourcerecordid>2688703570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c5c0057f0c04ac04b15cbd90cc88fbc4d63e398567de122491b35d7dbc0805083</originalsourceid><addsrcrecordid>eNo9UFtLwzAUDqLgnP4A8SXgc-dJ0rTpY523wUTE6WtI09Oto2s0bQf-e1M2fPg41-9cPkKuGcwYg-xutVh9zDhwNhOgeBbHJ2TCpFQRAEtOR5_HUQYSzslF121DNpaMTch73tJ86N3O9LWlX7ipbYM037u6NK1FOndt711DX12JDa2cpw-mXaN3Q0eXpsVovglx3a7pPW7Mvnb-kpxVpunw6min5PPpcTV_iZZvz4t5vowsz0QfWWkBZFqBhdgEFEzaoszAWqWqwsZlIlBkSiZpiYzzOGOFkGVaFhZUeEOJKbk9zP327mfArtdbN_g2rNQ8USoFIQOmhB26rHdd57HS377eGf-rGehROT0qp0fl9FG5wLk5cGpE_O8PlTRcLv4A2dtpEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703570</pqid></control><display><type>article</type><title>An Automatic Vehicle Avoidance Control Model for Dangerous Lane-Changing Behavior</title><source>IEEE Electronic Library (IEL)</source><creator>Cong, Sensen ; Wang, Wensa ; Liang, Jun ; Chen, Long ; Cai, Yingfeng</creator><creatorcontrib>Cong, Sensen ; Wang, Wensa ; Liang, Jun ; Chen, Long ; Cai, Yingfeng</creatorcontrib><description>This paper proposes a new avoidance control model for automatic vehicle in facing dangerous lane-changing behavior. Firstly, the new lane-changing probability factor based on Gaussian-mixture-based hidden Markov model is constructed to predict the lateral-vehicle lane-changing probability and output the pre-control parameters. Secondly, the back propagation neural network avoidance model, which combined with driver's avoidance behavior, is developed for achieving the instantaneous collision avoidance control. Moreover, the optimal solution between control parameters and vehicle stability is obtained by using linear quadratic regulator. Finally, the accuracy of the avoidance model is verified by the semi-physical driver-in-the-loop simulation based on PreScan/Simulink. Results show that the automatic vehicle with the proposed avoidance model can accurately and effectively take pre-braking and micro-steering behavior. The proposed model can greatly reduce vehicle collision probability and effectively take both safety and comfort of collision avoidance into account. In addition, the robustness of the control model under different network penetration is discussed.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3082944</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back propagation networks ; back propagation neural network ; Collision avoidance ; Collision dynamics ; dangerous lane-changing probability ; hidden Markov model ; Hidden Markov models ; Lane changing ; Linear quadratic regulator ; Markov chains ; Mathematical models ; mixed connected vehicle ; Neural networks ; Parameters ; Predictive models ; Robust control ; Stability criteria ; Steering ; Traffic safety ; Trajectory ; Wheels</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.8477-8487</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c5c0057f0c04ac04b15cbd90cc88fbc4d63e398567de122491b35d7dbc0805083</citedby><cites>FETCH-LOGICAL-c293t-c5c0057f0c04ac04b15cbd90cc88fbc4d63e398567de122491b35d7dbc0805083</cites><orcidid>0000-0002-0633-9887 ; 0000-0003-4475-0359 ; 0000-0002-0314-5016 ; 0000-0002-2079-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9447293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cong, Sensen</creatorcontrib><creatorcontrib>Wang, Wensa</creatorcontrib><creatorcontrib>Liang, Jun</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Cai, Yingfeng</creatorcontrib><title>An Automatic Vehicle Avoidance Control Model for Dangerous Lane-Changing Behavior</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes a new avoidance control model for automatic vehicle in facing dangerous lane-changing behavior. Firstly, the new lane-changing probability factor based on Gaussian-mixture-based hidden Markov model is constructed to predict the lateral-vehicle lane-changing probability and output the pre-control parameters. Secondly, the back propagation neural network avoidance model, which combined with driver's avoidance behavior, is developed for achieving the instantaneous collision avoidance control. Moreover, the optimal solution between control parameters and vehicle stability is obtained by using linear quadratic regulator. Finally, the accuracy of the avoidance model is verified by the semi-physical driver-in-the-loop simulation based on PreScan/Simulink. Results show that the automatic vehicle with the proposed avoidance model can accurately and effectively take pre-braking and micro-steering behavior. The proposed model can greatly reduce vehicle collision probability and effectively take both safety and comfort of collision avoidance into account. In addition, the robustness of the control model under different network penetration is discussed.</description><subject>Back propagation networks</subject><subject>back propagation neural network</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>dangerous lane-changing probability</subject><subject>hidden Markov model</subject><subject>Hidden Markov models</subject><subject>Lane changing</subject><subject>Linear quadratic regulator</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>mixed connected vehicle</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Predictive models</subject><subject>Robust control</subject><subject>Stability criteria</subject><subject>Steering</subject><subject>Traffic safety</subject><subject>Trajectory</subject><subject>Wheels</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UFtLwzAUDqLgnP4A8SXgc-dJ0rTpY523wUTE6WtI09Oto2s0bQf-e1M2fPg41-9cPkKuGcwYg-xutVh9zDhwNhOgeBbHJ2TCpFQRAEtOR5_HUQYSzslF121DNpaMTch73tJ86N3O9LWlX7ipbYM037u6NK1FOndt711DX12JDa2cpw-mXaN3Q0eXpsVovglx3a7pPW7Mvnb-kpxVpunw6min5PPpcTV_iZZvz4t5vowsz0QfWWkBZFqBhdgEFEzaoszAWqWqwsZlIlBkSiZpiYzzOGOFkGVaFhZUeEOJKbk9zP327mfArtdbN_g2rNQ8USoFIQOmhB26rHdd57HS377eGf-rGehROT0qp0fl9FG5wLk5cGpE_O8PlTRcLv4A2dtpEw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Cong, Sensen</creator><creator>Wang, Wensa</creator><creator>Liang, Jun</creator><creator>Chen, Long</creator><creator>Cai, Yingfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0633-9887</orcidid><orcidid>https://orcid.org/0000-0003-4475-0359</orcidid><orcidid>https://orcid.org/0000-0002-0314-5016</orcidid><orcidid>https://orcid.org/0000-0002-2079-3867</orcidid></search><sort><creationdate>20220701</creationdate><title>An Automatic Vehicle Avoidance Control Model for Dangerous Lane-Changing Behavior</title><author>Cong, Sensen ; Wang, Wensa ; Liang, Jun ; Chen, Long ; Cai, Yingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c5c0057f0c04ac04b15cbd90cc88fbc4d63e398567de122491b35d7dbc0805083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Back propagation networks</topic><topic>back propagation neural network</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>dangerous lane-changing probability</topic><topic>hidden Markov model</topic><topic>Hidden Markov models</topic><topic>Lane changing</topic><topic>Linear quadratic regulator</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>mixed connected vehicle</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Predictive models</topic><topic>Robust control</topic><topic>Stability criteria</topic><topic>Steering</topic><topic>Traffic safety</topic><topic>Trajectory</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Sensen</creatorcontrib><creatorcontrib>Wang, Wensa</creatorcontrib><creatorcontrib>Liang, Jun</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Cai, Yingfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cong, Sensen</au><au>Wang, Wensa</au><au>Liang, Jun</au><au>Chen, Long</au><au>Cai, Yingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automatic Vehicle Avoidance Control Model for Dangerous Lane-Changing Behavior</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>8477</spage><epage>8487</epage><pages>8477-8487</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes a new avoidance control model for automatic vehicle in facing dangerous lane-changing behavior. Firstly, the new lane-changing probability factor based on Gaussian-mixture-based hidden Markov model is constructed to predict the lateral-vehicle lane-changing probability and output the pre-control parameters. Secondly, the back propagation neural network avoidance model, which combined with driver's avoidance behavior, is developed for achieving the instantaneous collision avoidance control. Moreover, the optimal solution between control parameters and vehicle stability is obtained by using linear quadratic regulator. Finally, the accuracy of the avoidance model is verified by the semi-physical driver-in-the-loop simulation based on PreScan/Simulink. Results show that the automatic vehicle with the proposed avoidance model can accurately and effectively take pre-braking and micro-steering behavior. The proposed model can greatly reduce vehicle collision probability and effectively take both safety and comfort of collision avoidance into account. In addition, the robustness of the control model under different network penetration is discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3082944</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0633-9887</orcidid><orcidid>https://orcid.org/0000-0003-4475-0359</orcidid><orcidid>https://orcid.org/0000-0002-0314-5016</orcidid><orcidid>https://orcid.org/0000-0002-2079-3867</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.8477-8487
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_9447293
source IEEE Electronic Library (IEL)
subjects Back propagation networks
back propagation neural network
Collision avoidance
Collision dynamics
dangerous lane-changing probability
hidden Markov model
Hidden Markov models
Lane changing
Linear quadratic regulator
Markov chains
Mathematical models
mixed connected vehicle
Neural networks
Parameters
Predictive models
Robust control
Stability criteria
Steering
Traffic safety
Trajectory
Wheels
title An Automatic Vehicle Avoidance Control Model for Dangerous Lane-Changing Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automatic%20Vehicle%20Avoidance%20Control%20Model%20for%20Dangerous%20Lane-Changing%20Behavior&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Cong,%20Sensen&rft.date=2022-07-01&rft.volume=23&rft.issue=7&rft.spage=8477&rft.epage=8487&rft.pages=8477-8487&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3082944&rft_dat=%3Cproquest_RIE%3E2688703570%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688703570&rft_id=info:pmid/&rft_ieee_id=9447293&rfr_iscdi=true