Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach
Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2021-11, Vol.20 (11), p.7346-7359 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7359 |
---|---|
container_issue | 11 |
container_start_page | 7346 |
container_title | IEEE transactions on wireless communications |
container_volume | 20 |
creator | Zhang, Haibin Wang, Rong Sun, Wen Zhao, Huanlei |
description | Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover. |
doi_str_mv | 10.1109/TWC.2021.3082986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444665</ieee_id><sourcerecordid>2595719696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</originalsourceid><addsrcrecordid>eNo9kEtLw0AQx4MoWKt3wcuC59R9JhtvffmAFkFaPIbZZNKmTTdxNz3025uS4mkG5v9gfkHwyOiIMZq8rH6mI045GwmqeaKjq2DAlNIh51Jfn3cRhYzH0W1w5_2OUhZHSg2C_bI2ZVW2J7IECxs8oG1JUTsyqepsn22htOEEPOZkXbUOwhlaj2Seb5BM60NzbEu7eSVjMkNsyDeWtvNmfcoCwdnuTMZN42rItvfBTQGVx4fLHAbrt_lq-hEuvt4_p-NFmAkh2lAxZgRFmZsc4pyj1gq1AJSAaBQvwMTAu0-MNAZyrjmFJFGFMSilNnkmhsFzn9vV_h7Rt-muPjrbVaZcJSpmSZREnYr2qszV3jss0saVB3CnlNH0jDTtkKZnpOkFaWd56i0lIv7LEyllFCnxB_Pac44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595719696</pqid></control><display><type>article</type><title>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haibin ; Wang, Rong ; Sun, Wen ; Zhao, Huanlei</creator><creatorcontrib>Zhang, Haibin ; Wang, Rong ; Sun, Wen ; Zhao, Huanlei</creatorcontrib><description>Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3082986</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base stations ; Blockchain ; Computation offloading ; Cryptography ; Cybersecurity ; Decisions ; Deep learning ; deep reinforcement learning ; Delays ; Edge computing ; Electronic devices ; Handover ; Mobile computing ; Mobile edge computing ; Mobility management ; Multiple objective analysis ; Optimization ; Servers ; Task analysis ; ultra-dense edge computing ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7346-7359</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</citedby><cites>FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</cites><orcidid>0000-0002-5730-0579 ; 0000-0001-7086-4910 ; 0000-0002-0080-6341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Zhao, Huanlei</creatorcontrib><title>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover.</description><subject>Base stations</subject><subject>Blockchain</subject><subject>Computation offloading</subject><subject>Cryptography</subject><subject>Cybersecurity</subject><subject>Decisions</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Handover</subject><subject>Mobile computing</subject><subject>Mobile edge computing</subject><subject>Mobility management</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Servers</subject><subject>Task analysis</subject><subject>ultra-dense edge computing</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AQx4MoWKt3wcuC59R9JhtvffmAFkFaPIbZZNKmTTdxNz3025uS4mkG5v9gfkHwyOiIMZq8rH6mI045GwmqeaKjq2DAlNIh51Jfn3cRhYzH0W1w5_2OUhZHSg2C_bI2ZVW2J7IECxs8oG1JUTsyqepsn22htOEEPOZkXbUOwhlaj2Seb5BM60NzbEu7eSVjMkNsyDeWtvNmfcoCwdnuTMZN42rItvfBTQGVx4fLHAbrt_lq-hEuvt4_p-NFmAkh2lAxZgRFmZsc4pyj1gq1AJSAaBQvwMTAu0-MNAZyrjmFJFGFMSilNnkmhsFzn9vV_h7Rt-muPjrbVaZcJSpmSZREnYr2qszV3jss0saVB3CnlNH0jDTtkKZnpOkFaWd56i0lIv7LEyllFCnxB_Pac44</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhang, Haibin</creator><creator>Wang, Rong</creator><creator>Sun, Wen</creator><creator>Zhao, Huanlei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5730-0579</orcidid><orcidid>https://orcid.org/0000-0001-7086-4910</orcidid><orcidid>https://orcid.org/0000-0002-0080-6341</orcidid></search><sort><creationdate>202111</creationdate><title>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</title><author>Zhang, Haibin ; Wang, Rong ; Sun, Wen ; Zhao, Huanlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base stations</topic><topic>Blockchain</topic><topic>Computation offloading</topic><topic>Cryptography</topic><topic>Cybersecurity</topic><topic>Decisions</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Handover</topic><topic>Mobile computing</topic><topic>Mobile edge computing</topic><topic>Mobility management</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Servers</topic><topic>Task analysis</topic><topic>ultra-dense edge computing</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Zhao, Huanlei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haibin</au><au>Wang, Rong</au><au>Sun, Wen</au><au>Zhao, Huanlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-11</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>7346</spage><epage>7359</epage><pages>7346-7359</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3082986</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5730-0579</orcidid><orcidid>https://orcid.org/0000-0001-7086-4910</orcidid><orcidid>https://orcid.org/0000-0002-0080-6341</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7346-7359 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_9444665 |
source | IEEE Electronic Library (IEL) |
subjects | Base stations Blockchain Computation offloading Cryptography Cybersecurity Decisions Deep learning deep reinforcement learning Delays Edge computing Electronic devices Handover Mobile computing Mobile edge computing Mobility management Multiple objective analysis Optimization Servers Task analysis ultra-dense edge computing Wireless communication |
title | Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility%20Management%20for%20Blockchain-Based%20Ultra-Dense%20Edge%20Computing:%20A%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhang,%20Haibin&rft.date=2021-11&rft.volume=20&rft.issue=11&rft.spage=7346&rft.epage=7359&rft.pages=7346-7359&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3082986&rft_dat=%3Cproquest_RIE%3E2595719696%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595719696&rft_id=info:pmid/&rft_ieee_id=9444665&rfr_iscdi=true |