Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach

Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2021-11, Vol.20 (11), p.7346-7359
Hauptverfasser: Zhang, Haibin, Wang, Rong, Sun, Wen, Zhao, Huanlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7359
container_issue 11
container_start_page 7346
container_title IEEE transactions on wireless communications
container_volume 20
creator Zhang, Haibin
Wang, Rong
Sun, Wen
Zhao, Huanlei
description Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover.
doi_str_mv 10.1109/TWC.2021.3082986
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444665</ieee_id><sourcerecordid>2595719696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</originalsourceid><addsrcrecordid>eNo9kEtLw0AQx4MoWKt3wcuC59R9JhtvffmAFkFaPIbZZNKmTTdxNz3025uS4mkG5v9gfkHwyOiIMZq8rH6mI045GwmqeaKjq2DAlNIh51Jfn3cRhYzH0W1w5_2OUhZHSg2C_bI2ZVW2J7IECxs8oG1JUTsyqepsn22htOEEPOZkXbUOwhlaj2Seb5BM60NzbEu7eSVjMkNsyDeWtvNmfcoCwdnuTMZN42rItvfBTQGVx4fLHAbrt_lq-hEuvt4_p-NFmAkh2lAxZgRFmZsc4pyj1gq1AJSAaBQvwMTAu0-MNAZyrjmFJFGFMSilNnkmhsFzn9vV_h7Rt-muPjrbVaZcJSpmSZREnYr2qszV3jss0saVB3CnlNH0jDTtkKZnpOkFaWd56i0lIv7LEyllFCnxB_Pac44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595719696</pqid></control><display><type>article</type><title>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haibin ; Wang, Rong ; Sun, Wen ; Zhao, Huanlei</creator><creatorcontrib>Zhang, Haibin ; Wang, Rong ; Sun, Wen ; Zhao, Huanlei</creatorcontrib><description>Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3082986</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Base stations ; Blockchain ; Computation offloading ; Cryptography ; Cybersecurity ; Decisions ; Deep learning ; deep reinforcement learning ; Delays ; Edge computing ; Electronic devices ; Handover ; Mobile computing ; Mobile edge computing ; Mobility management ; Multiple objective analysis ; Optimization ; Servers ; Task analysis ; ultra-dense edge computing ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7346-7359</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</citedby><cites>FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</cites><orcidid>0000-0002-5730-0579 ; 0000-0001-7086-4910 ; 0000-0002-0080-6341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Zhao, Huanlei</creatorcontrib><title>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover.</description><subject>Base stations</subject><subject>Blockchain</subject><subject>Computation offloading</subject><subject>Cryptography</subject><subject>Cybersecurity</subject><subject>Decisions</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Handover</subject><subject>Mobile computing</subject><subject>Mobile edge computing</subject><subject>Mobility management</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Servers</subject><subject>Task analysis</subject><subject>ultra-dense edge computing</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AQx4MoWKt3wcuC59R9JhtvffmAFkFaPIbZZNKmTTdxNz3025uS4mkG5v9gfkHwyOiIMZq8rH6mI045GwmqeaKjq2DAlNIh51Jfn3cRhYzH0W1w5_2OUhZHSg2C_bI2ZVW2J7IECxs8oG1JUTsyqepsn22htOEEPOZkXbUOwhlaj2Seb5BM60NzbEu7eSVjMkNsyDeWtvNmfcoCwdnuTMZN42rItvfBTQGVx4fLHAbrt_lq-hEuvt4_p-NFmAkh2lAxZgRFmZsc4pyj1gq1AJSAaBQvwMTAu0-MNAZyrjmFJFGFMSilNnkmhsFzn9vV_h7Rt-muPjrbVaZcJSpmSZREnYr2qszV3jss0saVB3CnlNH0jDTtkKZnpOkFaWd56i0lIv7LEyllFCnxB_Pac44</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhang, Haibin</creator><creator>Wang, Rong</creator><creator>Sun, Wen</creator><creator>Zhao, Huanlei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5730-0579</orcidid><orcidid>https://orcid.org/0000-0001-7086-4910</orcidid><orcidid>https://orcid.org/0000-0002-0080-6341</orcidid></search><sort><creationdate>202111</creationdate><title>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</title><author>Zhang, Haibin ; Wang, Rong ; Sun, Wen ; Zhao, Huanlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-511b30e4dbda7d2e885e83ae4aeeb52fab7a2276b4bbad2820a995fbbe448bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base stations</topic><topic>Blockchain</topic><topic>Computation offloading</topic><topic>Cryptography</topic><topic>Cybersecurity</topic><topic>Decisions</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Handover</topic><topic>Mobile computing</topic><topic>Mobile edge computing</topic><topic>Mobility management</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Servers</topic><topic>Task analysis</topic><topic>ultra-dense edge computing</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Sun, Wen</creatorcontrib><creatorcontrib>Zhao, Huanlei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haibin</au><au>Wang, Rong</au><au>Sun, Wen</au><au>Zhao, Huanlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-11</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>7346</spage><epage>7359</epage><pages>7346-7359</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Ultra-dense edge computing is expected to provide delay-sensitive and computational-intensive services for mobile devices. Due to the complexity and unpredictability of the network environment, it is challenging to ensure the continuity and security of computing offloading services in the process of user movement. Most existing works consider the decisions of communication handover and computational offloading simultaneously while ignoring the security on offloading tasks. In light of this, we propose a secure mobility management framework for blockchain-based ultra-dense edge computing, where blockchain reduces duplicate authentication between edge servers. We jointly optimize the wireless handover and service migration decisions between base stations, which is translated into a multi-objective dynamic optimization problem using the Lyapunov optimization. The optimization problem is solved by deep reinforcement learning approach based on the Actor - Critic method. Finally, we use simulation studies to evaluate the performance of the proposed scheme. The results show that, compared with other existing schemes, the proposed scheme can reduce the average delay of computing tasks, the rate of tasks failure and the rate of handover.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3082986</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5730-0579</orcidid><orcidid>https://orcid.org/0000-0001-7086-4910</orcidid><orcidid>https://orcid.org/0000-0002-0080-6341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7346-7359
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_9444665
source IEEE Electronic Library (IEL)
subjects Base stations
Blockchain
Computation offloading
Cryptography
Cybersecurity
Decisions
Deep learning
deep reinforcement learning
Delays
Edge computing
Electronic devices
Handover
Mobile computing
Mobile edge computing
Mobility management
Multiple objective analysis
Optimization
Servers
Task analysis
ultra-dense edge computing
Wireless communication
title Mobility Management for Blockchain-Based Ultra-Dense Edge Computing: A Deep Reinforcement Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility%20Management%20for%20Blockchain-Based%20Ultra-Dense%20Edge%20Computing:%20A%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zhang,%20Haibin&rft.date=2021-11&rft.volume=20&rft.issue=11&rft.spage=7346&rft.epage=7359&rft.pages=7346-7359&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3082986&rft_dat=%3Cproquest_RIE%3E2595719696%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595719696&rft_id=info:pmid/&rft_ieee_id=9444665&rfr_iscdi=true