Reputation Bootstrapping for Composite Services Using CP-Nets
We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2022-11, Vol.15 (6), p.3513-3527 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3527 |
---|---|
container_issue | 6 |
container_start_page | 3513 |
container_title | IEEE transactions on services computing |
container_volume | 15 |
creator | Mistry, Sajib Bouguettaya, Athman |
description | We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach. |
doi_str_mv | 10.1109/TSC.2021.3084928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444658</ieee_id><sourcerecordid>2754151251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC562ZfGySgwdd_IKiYttzSHcnssU2a5IK_nu3VMTTvDDPOwMPIedAJwDUXM1n9YRRBhNOtTBMH5ARGG5K4Eoc_svH5CSlFaUV09qMyPUb9tvschc2xW0IOeXo-r7bvBc-xKIO6z6kLmMxw_jVNZiKRdot69fyGXM6JUfefSQ8-51jsri_m9eP5fTl4am-mZYNM5DL1oumZV55YZyXqEBTRlE4JpdUUM15y7RyCpRsBk43nMLSg6mg8u2QkY_J5f5uH8PnFlO2q7CNm-GlZUoKkMAkDBTdU00MKUX0to_d2sVvC9TuJNlBkt1Jsr-ShsrFvtIh4h9uhBCV1PwHfIdhuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754151251</pqid></control><display><type>article</type><title>Reputation Bootstrapping for Composite Services Using CP-Nets</title><source>IEEE Electronic Library (IEL)</source><creator>Mistry, Sajib ; Bouguettaya, Athman</creator><creatorcontrib>Mistry, Sajib ; Bouguettaya, Athman</creatorcontrib><description>We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2021.3084928</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; combinatorial selection ; composite services ; Composition ; CP-nets ; History ; Machine learning ; Quality of service ; Reputation bootstrapping ; reputation propagation heuristics ; Service level agreements ; Surveillance ; Topology</subject><ispartof>IEEE transactions on services computing, 2022-11, Vol.15 (6), p.3513-3527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</citedby><cites>FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</cites><orcidid>0000-0003-1254-8092 ; 0000-0001-7513-3789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mistry, Sajib</creatorcontrib><creatorcontrib>Bouguettaya, Athman</creatorcontrib><title>Reputation Bootstrapping for Composite Services Using CP-Nets</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach.</description><subject>Biomedical imaging</subject><subject>combinatorial selection</subject><subject>composite services</subject><subject>Composition</subject><subject>CP-nets</subject><subject>History</subject><subject>Machine learning</subject><subject>Quality of service</subject><subject>Reputation bootstrapping</subject><subject>reputation propagation heuristics</subject><subject>Service level agreements</subject><subject>Surveillance</subject><subject>Topology</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3wcuC562ZfGySgwdd_IKiYttzSHcnssU2a5IK_nu3VMTTvDDPOwMPIedAJwDUXM1n9YRRBhNOtTBMH5ARGG5K4Eoc_svH5CSlFaUV09qMyPUb9tvschc2xW0IOeXo-r7bvBc-xKIO6z6kLmMxw_jVNZiKRdot69fyGXM6JUfefSQ8-51jsri_m9eP5fTl4am-mZYNM5DL1oumZV55YZyXqEBTRlE4JpdUUM15y7RyCpRsBk43nMLSg6mg8u2QkY_J5f5uH8PnFlO2q7CNm-GlZUoKkMAkDBTdU00MKUX0to_d2sVvC9TuJNlBkt1Jsr-ShsrFvtIh4h9uhBCV1PwHfIdhuw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Mistry, Sajib</creator><creator>Bouguettaya, Athman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1254-8092</orcidid><orcidid>https://orcid.org/0000-0001-7513-3789</orcidid></search><sort><creationdate>20221101</creationdate><title>Reputation Bootstrapping for Composite Services Using CP-Nets</title><author>Mistry, Sajib ; Bouguettaya, Athman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical imaging</topic><topic>combinatorial selection</topic><topic>composite services</topic><topic>Composition</topic><topic>CP-nets</topic><topic>History</topic><topic>Machine learning</topic><topic>Quality of service</topic><topic>Reputation bootstrapping</topic><topic>reputation propagation heuristics</topic><topic>Service level agreements</topic><topic>Surveillance</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mistry, Sajib</creatorcontrib><creatorcontrib>Bouguettaya, Athman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mistry, Sajib</au><au>Bouguettaya, Athman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reputation Bootstrapping for Composite Services Using CP-Nets</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>3513</spage><epage>3527</epage><pages>3513-3527</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2021.3084928</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1254-8092</orcidid><orcidid>https://orcid.org/0000-0001-7513-3789</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2022-11, Vol.15 (6), p.3513-3527 |
issn | 1939-1374 1939-1374 2372-0204 |
language | eng |
recordid | cdi_ieee_primary_9444658 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical imaging combinatorial selection composite services Composition CP-nets History Machine learning Quality of service Reputation bootstrapping reputation propagation heuristics Service level agreements Surveillance Topology |
title | Reputation Bootstrapping for Composite Services Using CP-Nets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reputation%20Bootstrapping%20for%20Composite%20Services%20Using%20CP-Nets&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Mistry,%20Sajib&rft.date=2022-11-01&rft.volume=15&rft.issue=6&rft.spage=3513&rft.epage=3527&rft.pages=3513-3527&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2021.3084928&rft_dat=%3Cproquest_RIE%3E2754151251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754151251&rft_id=info:pmid/&rft_ieee_id=9444658&rfr_iscdi=true |