Reputation Bootstrapping for Composite Services Using CP-Nets

We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2022-11, Vol.15 (6), p.3513-3527
Hauptverfasser: Mistry, Sajib, Bouguettaya, Athman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3527
container_issue 6
container_start_page 3513
container_title IEEE transactions on services computing
container_volume 15
creator Mistry, Sajib
Bouguettaya, Athman
description We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach.
doi_str_mv 10.1109/TSC.2021.3084928
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444658</ieee_id><sourcerecordid>2754151251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wcuC562ZfGySgwdd_IKiYttzSHcnssU2a5IK_nu3VMTTvDDPOwMPIedAJwDUXM1n9YRRBhNOtTBMH5ARGG5K4Eoc_svH5CSlFaUV09qMyPUb9tvschc2xW0IOeXo-r7bvBc-xKIO6z6kLmMxw_jVNZiKRdot69fyGXM6JUfefSQ8-51jsri_m9eP5fTl4am-mZYNM5DL1oumZV55YZyXqEBTRlE4JpdUUM15y7RyCpRsBk43nMLSg6mg8u2QkY_J5f5uH8PnFlO2q7CNm-GlZUoKkMAkDBTdU00MKUX0to_d2sVvC9TuJNlBkt1Jsr-ShsrFvtIh4h9uhBCV1PwHfIdhuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754151251</pqid></control><display><type>article</type><title>Reputation Bootstrapping for Composite Services Using CP-Nets</title><source>IEEE Electronic Library (IEL)</source><creator>Mistry, Sajib ; Bouguettaya, Athman</creator><creatorcontrib>Mistry, Sajib ; Bouguettaya, Athman</creatorcontrib><description>We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2021.3084928</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; combinatorial selection ; composite services ; Composition ; CP-nets ; History ; Machine learning ; Quality of service ; Reputation bootstrapping ; reputation propagation heuristics ; Service level agreements ; Surveillance ; Topology</subject><ispartof>IEEE transactions on services computing, 2022-11, Vol.15 (6), p.3513-3527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</citedby><cites>FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</cites><orcidid>0000-0003-1254-8092 ; 0000-0001-7513-3789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mistry, Sajib</creatorcontrib><creatorcontrib>Bouguettaya, Athman</creatorcontrib><title>Reputation Bootstrapping for Composite Services Using CP-Nets</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach.</description><subject>Biomedical imaging</subject><subject>combinatorial selection</subject><subject>composite services</subject><subject>Composition</subject><subject>CP-nets</subject><subject>History</subject><subject>Machine learning</subject><subject>Quality of service</subject><subject>Reputation bootstrapping</subject><subject>reputation propagation heuristics</subject><subject>Service level agreements</subject><subject>Surveillance</subject><subject>Topology</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3wcuC562ZfGySgwdd_IKiYttzSHcnssU2a5IK_nu3VMTTvDDPOwMPIedAJwDUXM1n9YRRBhNOtTBMH5ARGG5K4Eoc_svH5CSlFaUV09qMyPUb9tvschc2xW0IOeXo-r7bvBc-xKIO6z6kLmMxw_jVNZiKRdot69fyGXM6JUfefSQ8-51jsri_m9eP5fTl4am-mZYNM5DL1oumZV55YZyXqEBTRlE4JpdUUM15y7RyCpRsBk43nMLSg6mg8u2QkY_J5f5uH8PnFlO2q7CNm-GlZUoKkMAkDBTdU00MKUX0to_d2sVvC9TuJNlBkt1Jsr-ShsrFvtIh4h9uhBCV1PwHfIdhuw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Mistry, Sajib</creator><creator>Bouguettaya, Athman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1254-8092</orcidid><orcidid>https://orcid.org/0000-0001-7513-3789</orcidid></search><sort><creationdate>20221101</creationdate><title>Reputation Bootstrapping for Composite Services Using CP-Nets</title><author>Mistry, Sajib ; Bouguettaya, Athman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-df4cd2f7f49af5e718020e4a25b040833d287a7175ccd28c301bf19616fd301e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical imaging</topic><topic>combinatorial selection</topic><topic>composite services</topic><topic>Composition</topic><topic>CP-nets</topic><topic>History</topic><topic>Machine learning</topic><topic>Quality of service</topic><topic>Reputation bootstrapping</topic><topic>reputation propagation heuristics</topic><topic>Service level agreements</topic><topic>Surveillance</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mistry, Sajib</creatorcontrib><creatorcontrib>Bouguettaya, Athman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mistry, Sajib</au><au>Bouguettaya, Athman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reputation Bootstrapping for Composite Services Using CP-Nets</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>3513</spage><epage>3527</epage><pages>3513-3527</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>We propose a novel framework to bootstrap the reputation of on-demand service compositions. On-demand compositions are usually context-aware and have little or no direct consumer feedback. The reputation bootstrapping of single or atomic services do not consider the topology of the composition and relationships among reputation-related factors. We apply Conditional Preference Networks (CP-nets) of reputation-related factors for each of component services in a composition. The reputation of a composite service is bootstrapped by the composition of CP-nets. We consider the history of invocation among component services to determine reputation-interdependence in a composition. The composition rules are constructed using the composition topology and four types of reputation-influence among component services. A heuristic-based Q-learning approach is proposed to select the optimal set of reputation-related CP-nets. Experimental results prove the efficiency of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2021.3084928</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1254-8092</orcidid><orcidid>https://orcid.org/0000-0001-7513-3789</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2022-11, Vol.15 (6), p.3513-3527
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_9444658
source IEEE Electronic Library (IEL)
subjects Biomedical imaging
combinatorial selection
composite services
Composition
CP-nets
History
Machine learning
Quality of service
Reputation bootstrapping
reputation propagation heuristics
Service level agreements
Surveillance
Topology
title Reputation Bootstrapping for Composite Services Using CP-Nets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reputation%20Bootstrapping%20for%20Composite%20Services%20Using%20CP-Nets&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Mistry,%20Sajib&rft.date=2022-11-01&rft.volume=15&rft.issue=6&rft.spage=3513&rft.epage=3527&rft.pages=3513-3527&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2021.3084928&rft_dat=%3Cproquest_RIE%3E2754151251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754151251&rft_id=info:pmid/&rft_ieee_id=9444658&rfr_iscdi=true