Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems
In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the c...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2021-08, Vol.20 (8), p.1424-1428 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1428 |
---|---|
container_issue | 8 |
container_start_page | 1424 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 20 |
creator | Li, Hao Chen, Lijia Qiu, Jinghui |
description | In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems. |
doi_str_mv | 10.1109/LAWP.2021.3085033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444655</ieee_id><sourcerecordid>2557978639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dj8xuciylaqFqBcXjstlMJDXN1t2k0n9vYoundw7PO8w8hFwzOmGMZnfL6cdqwilnE0FToEKckBGDJI1BgTodZiFjxjmck4sQ1pQyJUGMyOvMNTtXd23lGlNHz9j5v2h_nP8KUel89NTVbVV6_O6wsftoXqNtvduYzwbbykaLZoc-YLTyLq9xEy7JWWnqgFfHHJP3-_nb7DFevjwsZtNlbHkm2ljJNE9NkVOKmQRa8EIaZMZKKEqTAFUKhRGlQkxUboEBzzFhheK2SGkpqRiT28PerXf9aaHVa9f5_omgOYDKVCpF1lPsQFnvQvBY6q2vNsbvNaN6MKcHc3owp4_m-s7NoVMh4j-fJUkiAcQvNhNrkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557978639</pqid></control><display><type>article</type><title>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Hao ; Chen, Lijia ; Qiu, Jinghui</creator><creatorcontrib>Li, Hao ; Chen, Lijia ; Qiu, Jinghui</creatorcontrib><description>In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2021.3085033</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Back propagation ; Back propagation (BP) method ; Back propagation networks ; Backpropagation ; Convolutional neural networks ; electromagnetic inverse scattering problems ; Electromagnetic scattering ; Electromagnetics ; Frequencies ; Inverse problems ; Inverse scattering ; Iterative methods ; multifrequency ; Neural networks ; Permittivity ; Training ; U-Net convolutional neural network (CNN)</subject><ispartof>IEEE antennas and wireless propagation letters, 2021-08, Vol.20 (8), p.1424-1428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</citedby><cites>FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</cites><orcidid>0000-0003-2464-2422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Chen, Lijia</creatorcontrib><creatorcontrib>Qiu, Jinghui</creatorcontrib><title>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation (BP) method</subject><subject>Back propagation networks</subject><subject>Backpropagation</subject><subject>Convolutional neural networks</subject><subject>electromagnetic inverse scattering problems</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetics</subject><subject>Frequencies</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>Iterative methods</subject><subject>multifrequency</subject><subject>Neural networks</subject><subject>Permittivity</subject><subject>Training</subject><subject>U-Net convolutional neural network (CNN)</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dj8xuciylaqFqBcXjstlMJDXN1t2k0n9vYoundw7PO8w8hFwzOmGMZnfL6cdqwilnE0FToEKckBGDJI1BgTodZiFjxjmck4sQ1pQyJUGMyOvMNTtXd23lGlNHz9j5v2h_nP8KUel89NTVbVV6_O6wsftoXqNtvduYzwbbykaLZoc-YLTyLq9xEy7JWWnqgFfHHJP3-_nb7DFevjwsZtNlbHkm2ljJNE9NkVOKmQRa8EIaZMZKKEqTAFUKhRGlQkxUboEBzzFhheK2SGkpqRiT28PerXf9aaHVa9f5_omgOYDKVCpF1lPsQFnvQvBY6q2vNsbvNaN6MKcHc3owp4_m-s7NoVMh4j-fJUkiAcQvNhNrkQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Li, Hao</creator><creator>Chen, Lijia</creator><creator>Qiu, Jinghui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2464-2422</orcidid></search><sort><creationdate>20210801</creationdate><title>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</title><author>Li, Hao ; Chen, Lijia ; Qiu, Jinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation (BP) method</topic><topic>Back propagation networks</topic><topic>Backpropagation</topic><topic>Convolutional neural networks</topic><topic>electromagnetic inverse scattering problems</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetics</topic><topic>Frequencies</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>Iterative methods</topic><topic>multifrequency</topic><topic>Neural networks</topic><topic>Permittivity</topic><topic>Training</topic><topic>U-Net convolutional neural network (CNN)</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Chen, Lijia</creatorcontrib><creatorcontrib>Qiu, Jinghui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Hao</au><au>Chen, Lijia</au><au>Qiu, Jinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>20</volume><issue>8</issue><spage>1424</spage><epage>1428</epage><pages>1424-1428</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2021.3085033</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2464-2422</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2021-08, Vol.20 (8), p.1424-1428 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_ieee_primary_9444655 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Back propagation Back propagation (BP) method Back propagation networks Backpropagation Convolutional neural networks electromagnetic inverse scattering problems Electromagnetic scattering Electromagnetics Frequencies Inverse problems Inverse scattering Iterative methods multifrequency Neural networks Permittivity Training U-Net convolutional neural network (CNN) |
title | Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20Neural%20Networks%20for%20Multifrequency%20Electromagnetic%20Inverse%20Problems&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Li,%20Hao&rft.date=2021-08-01&rft.volume=20&rft.issue=8&rft.spage=1424&rft.epage=1428&rft.pages=1424-1428&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2021.3085033&rft_dat=%3Cproquest_RIE%3E2557978639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557978639&rft_id=info:pmid/&rft_ieee_id=9444655&rfr_iscdi=true |