Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems

In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2021-08, Vol.20 (8), p.1424-1428
Hauptverfasser: Li, Hao, Chen, Lijia, Qiu, Jinghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1428
container_issue 8
container_start_page 1424
container_title IEEE antennas and wireless propagation letters
container_volume 20
creator Li, Hao
Chen, Lijia
Qiu, Jinghui
description In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems.
doi_str_mv 10.1109/LAWP.2021.3085033
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444655</ieee_id><sourcerecordid>2557978639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dj8xuciylaqFqBcXjstlMJDXN1t2k0n9vYoundw7PO8w8hFwzOmGMZnfL6cdqwilnE0FToEKckBGDJI1BgTodZiFjxjmck4sQ1pQyJUGMyOvMNTtXd23lGlNHz9j5v2h_nP8KUel89NTVbVV6_O6wsftoXqNtvduYzwbbykaLZoc-YLTyLq9xEy7JWWnqgFfHHJP3-_nb7DFevjwsZtNlbHkm2ljJNE9NkVOKmQRa8EIaZMZKKEqTAFUKhRGlQkxUboEBzzFhheK2SGkpqRiT28PerXf9aaHVa9f5_omgOYDKVCpF1lPsQFnvQvBY6q2vNsbvNaN6MKcHc3owp4_m-s7NoVMh4j-fJUkiAcQvNhNrkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557978639</pqid></control><display><type>article</type><title>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Hao ; Chen, Lijia ; Qiu, Jinghui</creator><creatorcontrib>Li, Hao ; Chen, Lijia ; Qiu, Jinghui</creatorcontrib><description>In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2021.3085033</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Back propagation ; Back propagation (BP) method ; Back propagation networks ; Backpropagation ; Convolutional neural networks ; electromagnetic inverse scattering problems ; Electromagnetic scattering ; Electromagnetics ; Frequencies ; Inverse problems ; Inverse scattering ; Iterative methods ; multifrequency ; Neural networks ; Permittivity ; Training ; U-Net convolutional neural network (CNN)</subject><ispartof>IEEE antennas and wireless propagation letters, 2021-08, Vol.20 (8), p.1424-1428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</citedby><cites>FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</cites><orcidid>0000-0003-2464-2422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Chen, Lijia</creatorcontrib><creatorcontrib>Qiu, Jinghui</creatorcontrib><title>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation (BP) method</subject><subject>Back propagation networks</subject><subject>Backpropagation</subject><subject>Convolutional neural networks</subject><subject>electromagnetic inverse scattering problems</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetics</subject><subject>Frequencies</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>Iterative methods</subject><subject>multifrequency</subject><subject>Neural networks</subject><subject>Permittivity</subject><subject>Training</subject><subject>U-Net convolutional neural network (CNN)</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dj8xuciylaqFqBcXjstlMJDXN1t2k0n9vYoundw7PO8w8hFwzOmGMZnfL6cdqwilnE0FToEKckBGDJI1BgTodZiFjxjmck4sQ1pQyJUGMyOvMNTtXd23lGlNHz9j5v2h_nP8KUel89NTVbVV6_O6wsftoXqNtvduYzwbbykaLZoc-YLTyLq9xEy7JWWnqgFfHHJP3-_nb7DFevjwsZtNlbHkm2ljJNE9NkVOKmQRa8EIaZMZKKEqTAFUKhRGlQkxUboEBzzFhheK2SGkpqRiT28PerXf9aaHVa9f5_omgOYDKVCpF1lPsQFnvQvBY6q2vNsbvNaN6MKcHc3owp4_m-s7NoVMh4j-fJUkiAcQvNhNrkQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Li, Hao</creator><creator>Chen, Lijia</creator><creator>Qiu, Jinghui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2464-2422</orcidid></search><sort><creationdate>20210801</creationdate><title>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</title><author>Li, Hao ; Chen, Lijia ; Qiu, Jinghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-768b8adb00e9650d2d6ae1ac65dfa45077e3a3f7ee47bc5152be41d72cd80f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation (BP) method</topic><topic>Back propagation networks</topic><topic>Backpropagation</topic><topic>Convolutional neural networks</topic><topic>electromagnetic inverse scattering problems</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetics</topic><topic>Frequencies</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>Iterative methods</topic><topic>multifrequency</topic><topic>Neural networks</topic><topic>Permittivity</topic><topic>Training</topic><topic>U-Net convolutional neural network (CNN)</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Chen, Lijia</creatorcontrib><creatorcontrib>Qiu, Jinghui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Hao</au><au>Chen, Lijia</au><au>Qiu, Jinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>20</volume><issue>8</issue><spage>1424</spage><epage>1428</epage><pages>1424-1428</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In this letter, the multiple-channel scheme U-Net convolutional neural network (CNN) is introduced to solve the multifrequency electromagnetic inverse scattering problems. The U-Net CNN inversion method can achieve results with acceptable quality in a very short time, avoiding the drawbacks of the conventional iterative methods, such as ill conditions, heavy computational cost, time-consuming, etc. The training set is constructed by the multifrequency back propagation method. The inversion experiments based on synthetic and measured data show that the U-Net CNN inversion method has good performance in both single-and multifrequency cases. Compared with the single-frequency ones, the multifrequency U-Net CNN inversion results are more stable and accurate. This letter further shows that the multifrequency U-Net CNN work well in high contrast problems or more complex situations, and even can work in a different frequency band. It demonstrates that the multifrequency U-Net CNN suitable for solving actual inverse problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2021.3085033</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2464-2422</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2021-08, Vol.20 (8), p.1424-1428
issn 1536-1225
1548-5757
language eng
recordid cdi_ieee_primary_9444655
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Back propagation
Back propagation (BP) method
Back propagation networks
Backpropagation
Convolutional neural networks
electromagnetic inverse scattering problems
Electromagnetic scattering
Electromagnetics
Frequencies
Inverse problems
Inverse scattering
Iterative methods
multifrequency
Neural networks
Permittivity
Training
U-Net convolutional neural network (CNN)
title Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20Neural%20Networks%20for%20Multifrequency%20Electromagnetic%20Inverse%20Problems&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Li,%20Hao&rft.date=2021-08-01&rft.volume=20&rft.issue=8&rft.spage=1424&rft.epage=1428&rft.pages=1424-1428&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2021.3085033&rft_dat=%3Cproquest_RIE%3E2557978639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557978639&rft_id=info:pmid/&rft_ieee_id=9444655&rfr_iscdi=true