Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing
The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for p...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2021-08, Vol.25 (8), p.2763-2767 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2767 |
---|---|
container_issue | 8 |
container_start_page | 2763 |
container_title | IEEE communications letters |
container_volume | 25 |
creator | Holm, Josefine Chiariotti, Federico Nielsen, Morten Popovski, Petar |
description | The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden. |
doi_str_mv | 10.1109/LCOMM.2021.3085023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444434</ieee_id><sourcerecordid>2560134311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExH9A3pp4kUPi_3cbo9KFEkWMRGPpukuUyjCLrZL_Pj1FiHOYT6S953MPElyTnCPEKxuiv54NOpRTEmP4Vxgyg6SDhEiT2lMh7HHuUqlVPlxchLCAmOcU0E6yVvhLLRuBWhkvtzK_ZjWNTVqLDI1GtYt-Bra7TiZu3oW0NWwmVyjJ2g_G_-O7kyAKYr6gTfrOXpxs9os0bNvKggh6k-TI2uWAc72tZu8PtxP-o9pMR4M-7dFWjGm2nQKVElLc2ulALC85EbxjKtSUjbFXGa45La0IuNEECpFfIznlaoyIkVVYmDd5HK3d-2bjw2EVi-ajY-3BE1FhgnjjJCoojtV5ZsQPFi99m5l_LcmWG8x6j-MeotR7zFG08XO5ADg36B4jLj1FwIwbQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134311</pqid></control><display><type>article</type><title>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Holm, Josefine ; Chiariotti, Federico ; Nielsen, Morten ; Popovski, Petar</creator><creatorcontrib>Holm, Josefine ; Chiariotti, Federico ; Nielsen, Morten ; Popovski, Petar</creatorcontrib><description>The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3085023</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Base stations ; Covariance matrices ; Graph signal processing ; Graph theory ; Heuristic algorithms ; Internet of Things ; Interpolation ; Partitioning algorithms ; Sampling ; sampling set selection ; Signal processing</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2763-2767</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</citedby><cites>FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</cites><orcidid>0000-0002-5796-9416 ; 0000-0002-9078-0594 ; 0000-0001-6195-4797 ; 0000-0002-7915-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Holm, Josefine</creatorcontrib><creatorcontrib>Chiariotti, Federico</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><creatorcontrib>Popovski, Petar</creatorcontrib><title>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.</description><subject>Algorithms</subject><subject>Base stations</subject><subject>Covariance matrices</subject><subject>Graph signal processing</subject><subject>Graph theory</subject><subject>Heuristic algorithms</subject><subject>Internet of Things</subject><subject>Interpolation</subject><subject>Partitioning algorithms</subject><subject>Sampling</subject><subject>sampling set selection</subject><subject>Signal processing</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhjdGExH9A3pp4kUPi_3cbo9KFEkWMRGPpukuUyjCLrZL_Pj1FiHOYT6S953MPElyTnCPEKxuiv54NOpRTEmP4Vxgyg6SDhEiT2lMh7HHuUqlVPlxchLCAmOcU0E6yVvhLLRuBWhkvtzK_ZjWNTVqLDI1GtYt-Bra7TiZu3oW0NWwmVyjJ2g_G_-O7kyAKYr6gTfrOXpxs9os0bNvKggh6k-TI2uWAc72tZu8PtxP-o9pMR4M-7dFWjGm2nQKVElLc2ulALC85EbxjKtSUjbFXGa45La0IuNEECpFfIznlaoyIkVVYmDd5HK3d-2bjw2EVi-ajY-3BE1FhgnjjJCoojtV5ZsQPFi99m5l_LcmWG8x6j-MeotR7zFG08XO5ADg36B4jLj1FwIwbQs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Holm, Josefine</creator><creator>Chiariotti, Federico</creator><creator>Nielsen, Morten</creator><creator>Popovski, Petar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5796-9416</orcidid><orcidid>https://orcid.org/0000-0002-9078-0594</orcidid><orcidid>https://orcid.org/0000-0001-6195-4797</orcidid><orcidid>https://orcid.org/0000-0002-7915-7275</orcidid></search><sort><creationdate>20210801</creationdate><title>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</title><author>Holm, Josefine ; Chiariotti, Federico ; Nielsen, Morten ; Popovski, Petar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Base stations</topic><topic>Covariance matrices</topic><topic>Graph signal processing</topic><topic>Graph theory</topic><topic>Heuristic algorithms</topic><topic>Internet of Things</topic><topic>Interpolation</topic><topic>Partitioning algorithms</topic><topic>Sampling</topic><topic>sampling set selection</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holm, Josefine</creatorcontrib><creatorcontrib>Chiariotti, Federico</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><creatorcontrib>Popovski, Petar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holm, Josefine</au><au>Chiariotti, Federico</au><au>Nielsen, Morten</au><au>Popovski, Petar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2763</spage><epage>2767</epage><pages>2763-2767</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3085023</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5796-9416</orcidid><orcidid>https://orcid.org/0000-0002-9078-0594</orcidid><orcidid>https://orcid.org/0000-0001-6195-4797</orcidid><orcidid>https://orcid.org/0000-0002-7915-7275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2021-08, Vol.25 (8), p.2763-2767 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_9444434 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Base stations Covariance matrices Graph signal processing Graph theory Heuristic algorithms Internet of Things Interpolation Partitioning algorithms Sampling sampling set selection Signal processing |
title | Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifetime%20Maximization%20of%20an%20Internet%20of%20Things%20(IoT)%20Network%20Based%20on%20Graph%20Signal%20Processing&rft.jtitle=IEEE%20communications%20letters&rft.au=Holm,%20Josefine&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2763&rft.epage=2767&rft.pages=2763-2767&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3085023&rft_dat=%3Cproquest_RIE%3E2560134311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134311&rft_id=info:pmid/&rft_ieee_id=9444434&rfr_iscdi=true |