Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing

The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2021-08, Vol.25 (8), p.2763-2767
Hauptverfasser: Holm, Josefine, Chiariotti, Federico, Nielsen, Morten, Popovski, Petar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2767
container_issue 8
container_start_page 2763
container_title IEEE communications letters
container_volume 25
creator Holm, Josefine
Chiariotti, Federico
Nielsen, Morten
Popovski, Petar
description The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.
doi_str_mv 10.1109/LCOMM.2021.3085023
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9444434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444434</ieee_id><sourcerecordid>2560134311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExH9A3pp4kUPi_3cbo9KFEkWMRGPpukuUyjCLrZL_Pj1FiHOYT6S953MPElyTnCPEKxuiv54NOpRTEmP4Vxgyg6SDhEiT2lMh7HHuUqlVPlxchLCAmOcU0E6yVvhLLRuBWhkvtzK_ZjWNTVqLDI1GtYt-Bra7TiZu3oW0NWwmVyjJ2g_G_-O7kyAKYr6gTfrOXpxs9os0bNvKggh6k-TI2uWAc72tZu8PtxP-o9pMR4M-7dFWjGm2nQKVElLc2ulALC85EbxjKtSUjbFXGa45La0IuNEECpFfIznlaoyIkVVYmDd5HK3d-2bjw2EVi-ajY-3BE1FhgnjjJCoojtV5ZsQPFi99m5l_LcmWG8x6j-MeotR7zFG08XO5ADg36B4jLj1FwIwbQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134311</pqid></control><display><type>article</type><title>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Holm, Josefine ; Chiariotti, Federico ; Nielsen, Morten ; Popovski, Petar</creator><creatorcontrib>Holm, Josefine ; Chiariotti, Federico ; Nielsen, Morten ; Popovski, Petar</creatorcontrib><description>The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3085023</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Base stations ; Covariance matrices ; Graph signal processing ; Graph theory ; Heuristic algorithms ; Internet of Things ; Interpolation ; Partitioning algorithms ; Sampling ; sampling set selection ; Signal processing</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2763-2767</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</citedby><cites>FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</cites><orcidid>0000-0002-5796-9416 ; 0000-0002-9078-0594 ; 0000-0001-6195-4797 ; 0000-0002-7915-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Holm, Josefine</creatorcontrib><creatorcontrib>Chiariotti, Federico</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><creatorcontrib>Popovski, Petar</creatorcontrib><title>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.</description><subject>Algorithms</subject><subject>Base stations</subject><subject>Covariance matrices</subject><subject>Graph signal processing</subject><subject>Graph theory</subject><subject>Heuristic algorithms</subject><subject>Internet of Things</subject><subject>Interpolation</subject><subject>Partitioning algorithms</subject><subject>Sampling</subject><subject>sampling set selection</subject><subject>Signal processing</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhjdGExH9A3pp4kUPi_3cbo9KFEkWMRGPpukuUyjCLrZL_Pj1FiHOYT6S953MPElyTnCPEKxuiv54NOpRTEmP4Vxgyg6SDhEiT2lMh7HHuUqlVPlxchLCAmOcU0E6yVvhLLRuBWhkvtzK_ZjWNTVqLDI1GtYt-Bra7TiZu3oW0NWwmVyjJ2g_G_-O7kyAKYr6gTfrOXpxs9os0bNvKggh6k-TI2uWAc72tZu8PtxP-o9pMR4M-7dFWjGm2nQKVElLc2ulALC85EbxjKtSUjbFXGa45La0IuNEECpFfIznlaoyIkVVYmDd5HK3d-2bjw2EVi-ajY-3BE1FhgnjjJCoojtV5ZsQPFi99m5l_LcmWG8x6j-MeotR7zFG08XO5ADg36B4jLj1FwIwbQs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Holm, Josefine</creator><creator>Chiariotti, Federico</creator><creator>Nielsen, Morten</creator><creator>Popovski, Petar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5796-9416</orcidid><orcidid>https://orcid.org/0000-0002-9078-0594</orcidid><orcidid>https://orcid.org/0000-0001-6195-4797</orcidid><orcidid>https://orcid.org/0000-0002-7915-7275</orcidid></search><sort><creationdate>20210801</creationdate><title>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</title><author>Holm, Josefine ; Chiariotti, Federico ; Nielsen, Morten ; Popovski, Petar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-de297f28ff75eef4b4a94649b723d04760b4fbf56415127515548c9c6175cb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Base stations</topic><topic>Covariance matrices</topic><topic>Graph signal processing</topic><topic>Graph theory</topic><topic>Heuristic algorithms</topic><topic>Internet of Things</topic><topic>Interpolation</topic><topic>Partitioning algorithms</topic><topic>Sampling</topic><topic>sampling set selection</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holm, Josefine</creatorcontrib><creatorcontrib>Chiariotti, Federico</creatorcontrib><creatorcontrib>Nielsen, Morten</creatorcontrib><creatorcontrib>Popovski, Petar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holm, Josefine</au><au>Chiariotti, Federico</au><au>Nielsen, Morten</au><au>Popovski, Petar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2763</spage><epage>2767</epage><pages>2763-2767</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>The lifetime of an Internet of Things (IoT) system consisting of battery-powered devices can be increased by minimizing the number of transmissions per device while not excessively deteriorating the correctness of the overall IoT monitoring. We propose a graph signal processing based algorithm for partitioning the sensor nodes into disjoint sampling sets. The sets can be sampled on a round-robin basis and each one contains enough information to reconstruct the entire signal within an acceptable error bound. Simulations on different models of graphs, based on graph theory and on real-world applications, show that our proposal consistently outperforms state-of-the-art sampling schemes, with no additional computational burden.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3085023</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5796-9416</orcidid><orcidid>https://orcid.org/0000-0002-9078-0594</orcidid><orcidid>https://orcid.org/0000-0001-6195-4797</orcidid><orcidid>https://orcid.org/0000-0002-7915-7275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2021-08, Vol.25 (8), p.2763-2767
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_9444434
source IEEE Electronic Library (IEL)
subjects Algorithms
Base stations
Covariance matrices
Graph signal processing
Graph theory
Heuristic algorithms
Internet of Things
Interpolation
Partitioning algorithms
Sampling
sampling set selection
Signal processing
title Lifetime Maximization of an Internet of Things (IoT) Network Based on Graph Signal Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifetime%20Maximization%20of%20an%20Internet%20of%20Things%20(IoT)%20Network%20Based%20on%20Graph%20Signal%20Processing&rft.jtitle=IEEE%20communications%20letters&rft.au=Holm,%20Josefine&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2763&rft.epage=2767&rft.pages=2763-2767&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3085023&rft_dat=%3Cproquest_RIE%3E2560134311%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134311&rft_id=info:pmid/&rft_ieee_id=9444434&rfr_iscdi=true