Synthesis of α"-(Fe,M)16N2 Nanoparticles Obtained by Hydrogen Reduction and Subsequent Nitridation Starting From α-(Fe,M)OOH (M = Co, Al)
The metastable \alpha ^{\prime \prime } -Fe 16 N 2 is considered to be a candidate for rare earth-free semi-hard magnetic materials. However, it is necessary to improve the magnetocrystalline anisotropy of \alpha ^{\prime \prime } -Fe 16 N 2 to obtain higher coercivity, H_{c} . Many theoretical c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2022-02, Vol.58 (2), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 58 |
creator | Tobise, M. Saito, S. |
description | The metastable \alpha ^{\prime \prime } -Fe 16 N 2 is considered to be a candidate for rare earth-free semi-hard magnetic materials. However, it is necessary to improve the magnetocrystalline anisotropy of \alpha ^{\prime \prime } -Fe 16 N 2 to obtain higher coercivity, H_{c} . Many theoretical calculations and thin-film experiments have been performed by the substitution of Fe with elements such as Co, Ni, Mn, and Al. For example, Co is suggested to increase the magnetocrystalline anisotropy. The nitridation of \alpha -Fe nanoparticles produced by the reduction of an iron hydroxide such as \alpha -FeOOH is well known as one method for the synthesis of \alpha ^{\prime \prime } -Fe 16 N 2 nanoparticles. We have previously reported the influence of Co or Al substitution for Fe by the synthesis of \alpha ^{\prime \prime } -(Fe, Co) 16 N 2 or \alpha ^{\prime \prime } -(Fe, Al) 16 N 2 nanoparticles, and revealed that Co substitution results in very narrow limits of the temperature regions for reduction and nitridation, while Al substitution results in wider temperature regions. Here, we attempt the synthesis of \alpha ^{\prime \prime } -(Fe 0.95 Co 0.02 Al 0.03 ) 16 N 2 nanoparticles by hydrogen reduction of \alpha -(Fe 0.95 Co 0.02 Al 0.03 )OOH as a starting material and subsequent nitridation to investigate the complex effect of Fe substitution by Co and Al. |
doi_str_mv | 10.1109/TMAG.2021.3084603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9443182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9443182</ieee_id><sourcerecordid>2621803764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-bb5a171714d890458a27f0313e0a20297dd706f246108a5f9356aa13d0ac26713</originalsourceid><addsrcrecordid>eNotkMFOwkAQhjdGExF9AONloxdIKM7sbrftwQMhAiZAE8Fzs2W3WAJbbLeHPoNP44v4TFYlc5j8mT__92cIuUUYIkL0uF6MpkMGDIccQiGBn5EORgI9ABmdkw4Ahl4kpLgkV1W1a6XwETrkc9VY926qvKJFRr-_7r3exAwWfZRLRpfKFkdVunyzNxWNU6dyazRNGzprdFlsjaWvRtcblxeWKqvpqk4r81Eb6-gyd2Wu1d9p5X5D7JZOyuLQQk6MOJ7R3oI-0XExoKN9_5pcZGpfmZvT7pK3yfN6PPPm8fRlPJp7GwzReWnqKwzaETqMQPihYkEGHLkB1X4gCrQOQGZMSIRQ-VnEfakUcg1qw2SAvEse_nOPZdGWrVyyK-rStsiESYYh8ECK1nX378qNMcmxzA-qbJJICI4h4z_yD2uL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621803764</pqid></control><display><type>article</type><title>Synthesis of α"-(Fe,M)16N2 Nanoparticles Obtained by Hydrogen Reduction and Subsequent Nitridation Starting From α-(Fe,M)OOH (M = Co, Al)</title><source>IEEE Electronic Library (IEL)</source><creator>Tobise, M. ; Saito, S.</creator><creatorcontrib>Tobise, M. ; Saito, S.</creatorcontrib><description><![CDATA[The metastable <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 is considered to be a candidate for rare earth-free semi-hard magnetic materials. However, it is necessary to improve the magnetocrystalline anisotropy of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 to obtain higher coercivity, <inline-formula> <tex-math notation="LaTeX">H_{c} </tex-math></inline-formula>. Many theoretical calculations and thin-film experiments have been performed by the substitution of Fe with elements such as Co, Ni, Mn, and Al. For example, Co is suggested to increase the magnetocrystalline anisotropy. The nitridation of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-Fe nanoparticles produced by the reduction of an iron hydroxide such as <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-FeOOH is well known as one method for the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 nanoparticles. We have previously reported the influence of Co or Al substitution for Fe by the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe, Co) 16 N 2 or <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe, Al) 16 N 2 nanoparticles, and revealed that Co substitution results in very narrow limits of the temperature regions for reduction and nitridation, while Al substitution results in wider temperature regions. Here, we attempt the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe 0.95 Co 0.02 Al 0.03 ) 16 N 2 nanoparticles by hydrogen reduction of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-(Fe 0.95 Co 0.02 Al 0.03 )OOH as a starting material and subsequent nitridation to investigate the complex effect of Fe substitution by Co and Al.]]></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3084603</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Anisotropic magnetoresistance ; Anisotropy ; Cobalt ; Coercivity ; Hydrogen reduction ; Iron ; Iron nitride ; magnetic anisotropy field ; Magnetic hysteresis ; Magnetic materials ; Magnetism ; Magnetostatics ; Manganese ; nanoparticle ; Nanoparticles ; permanent magnet ; Perpendicular magnetic anisotropy ; rare earth-free ; Shape ; Substitutes ; Synthesis ; α”-Fe16N</subject><ispartof>IEEE transactions on magnetics, 2022-02, Vol.58 (2), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c181t-bb5a171714d890458a27f0313e0a20297dd706f246108a5f9356aa13d0ac26713</citedby><orcidid>0000-0002-0494-4434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9443182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9443182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tobise, M.</creatorcontrib><creatorcontrib>Saito, S.</creatorcontrib><title>Synthesis of α"-(Fe,M)16N2 Nanoparticles Obtained by Hydrogen Reduction and Subsequent Nitridation Starting From α-(Fe,M)OOH (M = Co, Al)</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description><![CDATA[The metastable <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 is considered to be a candidate for rare earth-free semi-hard magnetic materials. However, it is necessary to improve the magnetocrystalline anisotropy of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 to obtain higher coercivity, <inline-formula> <tex-math notation="LaTeX">H_{c} </tex-math></inline-formula>. Many theoretical calculations and thin-film experiments have been performed by the substitution of Fe with elements such as Co, Ni, Mn, and Al. For example, Co is suggested to increase the magnetocrystalline anisotropy. The nitridation of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-Fe nanoparticles produced by the reduction of an iron hydroxide such as <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-FeOOH is well known as one method for the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 nanoparticles. We have previously reported the influence of Co or Al substitution for Fe by the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe, Co) 16 N 2 or <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe, Al) 16 N 2 nanoparticles, and revealed that Co substitution results in very narrow limits of the temperature regions for reduction and nitridation, while Al substitution results in wider temperature regions. Here, we attempt the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe 0.95 Co 0.02 Al 0.03 ) 16 N 2 nanoparticles by hydrogen reduction of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-(Fe 0.95 Co 0.02 Al 0.03 )OOH as a starting material and subsequent nitridation to investigate the complex effect of Fe substitution by Co and Al.]]></description><subject>Aluminum</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Hydrogen reduction</subject><subject>Iron</subject><subject>Iron nitride</subject><subject>magnetic anisotropy field</subject><subject>Magnetic hysteresis</subject><subject>Magnetic materials</subject><subject>Magnetism</subject><subject>Magnetostatics</subject><subject>Manganese</subject><subject>nanoparticle</subject><subject>Nanoparticles</subject><subject>permanent magnet</subject><subject>Perpendicular magnetic anisotropy</subject><subject>rare earth-free</subject><subject>Shape</subject><subject>Substitutes</subject><subject>Synthesis</subject><subject>α”-Fe16N</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkMFOwkAQhjdGExF9AONloxdIKM7sbrftwQMhAiZAE8Fzs2W3WAJbbLeHPoNP44v4TFYlc5j8mT__92cIuUUYIkL0uF6MpkMGDIccQiGBn5EORgI9ABmdkw4Ahl4kpLgkV1W1a6XwETrkc9VY926qvKJFRr-_7r3exAwWfZRLRpfKFkdVunyzNxWNU6dyazRNGzprdFlsjaWvRtcblxeWKqvpqk4r81Eb6-gyd2Wu1d9p5X5D7JZOyuLQQk6MOJ7R3oI-0XExoKN9_5pcZGpfmZvT7pK3yfN6PPPm8fRlPJp7GwzReWnqKwzaETqMQPihYkEGHLkB1X4gCrQOQGZMSIRQ-VnEfakUcg1qw2SAvEse_nOPZdGWrVyyK-rStsiESYYh8ECK1nX378qNMcmxzA-qbJJICI4h4z_yD2uL</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Tobise, M.</creator><creator>Saito, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0494-4434</orcidid></search><sort><creationdate>20220201</creationdate><title>Synthesis of α"-(Fe,M)16N2 Nanoparticles Obtained by Hydrogen Reduction and Subsequent Nitridation Starting From α-(Fe,M)OOH (M = Co, Al)</title><author>Tobise, M. ; Saito, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-bb5a171714d890458a27f0313e0a20297dd706f246108a5f9356aa13d0ac26713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Hydrogen reduction</topic><topic>Iron</topic><topic>Iron nitride</topic><topic>magnetic anisotropy field</topic><topic>Magnetic hysteresis</topic><topic>Magnetic materials</topic><topic>Magnetism</topic><topic>Magnetostatics</topic><topic>Manganese</topic><topic>nanoparticle</topic><topic>Nanoparticles</topic><topic>permanent magnet</topic><topic>Perpendicular magnetic anisotropy</topic><topic>rare earth-free</topic><topic>Shape</topic><topic>Substitutes</topic><topic>Synthesis</topic><topic>α”-Fe16N</topic><toplevel>online_resources</toplevel><creatorcontrib>Tobise, M.</creatorcontrib><creatorcontrib>Saito, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tobise, M.</au><au>Saito, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of α"-(Fe,M)16N2 Nanoparticles Obtained by Hydrogen Reduction and Subsequent Nitridation Starting From α-(Fe,M)OOH (M = Co, Al)</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>58</volume><issue>2</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract><![CDATA[The metastable <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 is considered to be a candidate for rare earth-free semi-hard magnetic materials. However, it is necessary to improve the magnetocrystalline anisotropy of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 to obtain higher coercivity, <inline-formula> <tex-math notation="LaTeX">H_{c} </tex-math></inline-formula>. Many theoretical calculations and thin-film experiments have been performed by the substitution of Fe with elements such as Co, Ni, Mn, and Al. For example, Co is suggested to increase the magnetocrystalline anisotropy. The nitridation of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-Fe nanoparticles produced by the reduction of an iron hydroxide such as <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-FeOOH is well known as one method for the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-Fe 16 N 2 nanoparticles. We have previously reported the influence of Co or Al substitution for Fe by the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe, Co) 16 N 2 or <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe, Al) 16 N 2 nanoparticles, and revealed that Co substitution results in very narrow limits of the temperature regions for reduction and nitridation, while Al substitution results in wider temperature regions. Here, we attempt the synthesis of <inline-formula> <tex-math notation="LaTeX">\alpha ^{\prime \prime } </tex-math></inline-formula>-(Fe 0.95 Co 0.02 Al 0.03 ) 16 N 2 nanoparticles by hydrogen reduction of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-(Fe 0.95 Co 0.02 Al 0.03 )OOH as a starting material and subsequent nitridation to investigate the complex effect of Fe substitution by Co and Al.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2021.3084603</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0494-4434</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2022-02, Vol.58 (2), p.1-5 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_9443182 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum Anisotropic magnetoresistance Anisotropy Cobalt Coercivity Hydrogen reduction Iron Iron nitride magnetic anisotropy field Magnetic hysteresis Magnetic materials Magnetism Magnetostatics Manganese nanoparticle Nanoparticles permanent magnet Perpendicular magnetic anisotropy rare earth-free Shape Substitutes Synthesis α”-Fe16N |
title | Synthesis of α"-(Fe,M)16N2 Nanoparticles Obtained by Hydrogen Reduction and Subsequent Nitridation Starting From α-(Fe,M)OOH (M = Co, Al) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20%CE%B1%22-(Fe,M)16N2%20Nanoparticles%20Obtained%20by%20Hydrogen%20Reduction%20and%20Subsequent%20Nitridation%20Starting%20From%20%CE%B1-(Fe,M)OOH%20(M%20=%20Co,%20Al)&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Tobise,%20M.&rft.date=2022-02-01&rft.volume=58&rft.issue=2&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3084603&rft_dat=%3Cproquest_RIE%3E2621803764%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621803764&rft_id=info:pmid/&rft_ieee_id=9443182&rfr_iscdi=true |