ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images

The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.78755-78763
Hauptverfasser: Choi, Junyoung, Hildebrand, David Grant Colburn, Moon, Jungmin, Quan, Tran Minh, Tuan, Tran Anh, Ko, Sungahn, Jeong, Won-Ki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78763
container_issue
container_start_page 78755
container_title IEEE access
container_volume 9
creator Choi, Junyoung
Hildebrand, David Grant Colburn
Moon, Jungmin
Quan, Tran Minh
Tuan, Tran Anh
Ko, Sungahn
Jeong, Won-Ki
description The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions.
doi_str_mv 10.1109/ACCESS.2021.3084066
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9440958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9440958</ieee_id><doaj_id>oai_doaj_org_article_53f80570c8c44caf95eda59b0d7c06b0</doaj_id><sourcerecordid>2536031050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhiMEEqtlf8FeLHFELXYcOza3EhWoVMQhwGEv1sQfi6s0Lna6kH-P06wWjowszWj0PmPNvEVxS_CaECzfbppm27brEpdkTbGoMOfPiquScLmijPLn_9Qvi5uUDjiHyC1WXxXTnf3u0zu0QTmdoUebAfpp9DqhdkqjPSIXItr-PvUhwujDgIJDgPYQH7L4znYRnE8_0PsIfkD5tTZ66Fet1Rf1ts9FzMVnr2NIOpwmtDvCvU2vihcO-mRvHvN18e3D9mvzabX_8nHXbPYrXdViXBHNHeUl7oyQWuMOJC2tI4I5W0ppCDjOKKamNJVkABU1hBtnrMWsrkpK6HWxW-aaAAd1iv4IcVIBvLo0QrxXEPPCvVWMOpExrIWuKg1OMmuAyQ6bWmPe4Tzr9TLrFMPPs02jOoRzzBdLqsznxZRgNqvoopo3TtG6p18JVrNlarFMzZapR8sy9WahftkuuKS9HbR9IrNlvKa1yNoc81bi_9WNHy_eNeE8jBm9XVBv7V9EVhWWTNA_O3izEg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536031050</pqid></control><display><type>article</type><title>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Choi, Junyoung ; Hildebrand, David Grant Colburn ; Moon, Jungmin ; Quan, Tran Minh ; Tuan, Tran Anh ; Ko, Sungahn ; Jeong, Won-Ki</creator><creatorcontrib>Choi, Junyoung ; Hildebrand, David Grant Colburn ; Moon, Jungmin ; Quan, Tran Minh ; Tuan, Tran Anh ; Ko, Sungahn ; Jeong, Won-Ki</creatorcontrib><description>The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3084066</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Brain ; Cell morphology ; Cells (biology) ; Computer Science ; Computer Science, Information Systems ; Data processing ; Data visualization ; Datasets ; Electron microscopy ; Engineering ; Engineering, Electrical &amp; Electronic ; Graph theory ; Image reconstruction ; Image segmentation ; larval zebrafish ; Microscopy ; Morphology ; Science &amp; Technology ; serial-section electron microscopy ; Shape ; Statistical analysis ; Technology ; Telecommunications ; Three-dimensional displays ; Visual analytics ; Zebrafish</subject><ispartof>IEEE access, 2021, Vol.9, p.78755-78763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000673788400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</citedby><cites>FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</cites><orcidid>0000-0001-7374-9168 ; 0000-0002-9393-6451 ; 0000-0002-2079-3517 ; 0000-0002-4255-4402 ; 0000-0002-7410-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9440958$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Choi, Junyoung</creatorcontrib><creatorcontrib>Hildebrand, David Grant Colburn</creatorcontrib><creatorcontrib>Moon, Jungmin</creatorcontrib><creatorcontrib>Quan, Tran Minh</creatorcontrib><creatorcontrib>Tuan, Tran Anh</creatorcontrib><creatorcontrib>Ko, Sungahn</creatorcontrib><creatorcontrib>Jeong, Won-Ki</creatorcontrib><title>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions.</description><subject>Brain</subject><subject>Cell morphology</subject><subject>Cells (biology)</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Data processing</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>Electron microscopy</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Graph theory</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>larval zebrafish</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Science &amp; Technology</subject><subject>serial-section electron microscopy</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Three-dimensional displays</subject><subject>Visual analytics</subject><subject>Zebrafish</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2P0zAQhiMEEqtlf8FeLHFELXYcOza3EhWoVMQhwGEv1sQfi6s0Lna6kH-P06wWjowszWj0PmPNvEVxS_CaECzfbppm27brEpdkTbGoMOfPiquScLmijPLn_9Qvi5uUDjiHyC1WXxXTnf3u0zu0QTmdoUebAfpp9DqhdkqjPSIXItr-PvUhwujDgIJDgPYQH7L4znYRnE8_0PsIfkD5tTZ66Fet1Rf1ts9FzMVnr2NIOpwmtDvCvU2vihcO-mRvHvN18e3D9mvzabX_8nHXbPYrXdViXBHNHeUl7oyQWuMOJC2tI4I5W0ppCDjOKKamNJVkABU1hBtnrMWsrkpK6HWxW-aaAAd1iv4IcVIBvLo0QrxXEPPCvVWMOpExrIWuKg1OMmuAyQ6bWmPe4Tzr9TLrFMPPs02jOoRzzBdLqsznxZRgNqvoopo3TtG6p18JVrNlarFMzZapR8sy9WahftkuuKS9HbR9IrNlvKa1yNoc81bi_9WNHy_eNeE8jBm9XVBv7V9EVhWWTNA_O3izEg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Choi, Junyoung</creator><creator>Hildebrand, David Grant Colburn</creator><creator>Moon, Jungmin</creator><creator>Quan, Tran Minh</creator><creator>Tuan, Tran Anh</creator><creator>Ko, Sungahn</creator><creator>Jeong, Won-Ki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7374-9168</orcidid><orcidid>https://orcid.org/0000-0002-9393-6451</orcidid><orcidid>https://orcid.org/0000-0002-2079-3517</orcidid><orcidid>https://orcid.org/0000-0002-4255-4402</orcidid><orcidid>https://orcid.org/0000-0002-7410-5652</orcidid></search><sort><creationdate>2021</creationdate><title>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</title><author>Choi, Junyoung ; Hildebrand, David Grant Colburn ; Moon, Jungmin ; Quan, Tran Minh ; Tuan, Tran Anh ; Ko, Sungahn ; Jeong, Won-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain</topic><topic>Cell morphology</topic><topic>Cells (biology)</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Data processing</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>Electron microscopy</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Graph theory</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>larval zebrafish</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Science &amp; Technology</topic><topic>serial-section electron microscopy</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Three-dimensional displays</topic><topic>Visual analytics</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Junyoung</creatorcontrib><creatorcontrib>Hildebrand, David Grant Colburn</creatorcontrib><creatorcontrib>Moon, Jungmin</creatorcontrib><creatorcontrib>Quan, Tran Minh</creatorcontrib><creatorcontrib>Tuan, Tran Anh</creatorcontrib><creatorcontrib>Ko, Sungahn</creatorcontrib><creatorcontrib>Jeong, Won-Ki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Junyoung</au><au>Hildebrand, David Grant Colburn</au><au>Moon, Jungmin</au><au>Quan, Tran Minh</au><au>Tuan, Tran Anh</au><au>Ko, Sungahn</au><au>Jeong, Won-Ki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>78755</spage><epage>78763</epage><pages>78755-78763</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3084066</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7374-9168</orcidid><orcidid>https://orcid.org/0000-0002-9393-6451</orcidid><orcidid>https://orcid.org/0000-0002-2079-3517</orcidid><orcidid>https://orcid.org/0000-0002-4255-4402</orcidid><orcidid>https://orcid.org/0000-0002-7410-5652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.78755-78763
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9440958
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Brain
Cell morphology
Cells (biology)
Computer Science
Computer Science, Information Systems
Data processing
Data visualization
Datasets
Electron microscopy
Engineering
Engineering, Electrical & Electronic
Graph theory
Image reconstruction
Image segmentation
larval zebrafish
Microscopy
Morphology
Science & Technology
serial-section electron microscopy
Shape
Statistical analysis
Technology
Telecommunications
Three-dimensional displays
Visual analytics
Zebrafish
title ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZeVis:%20A%20Visual%20Analytics%20System%20for%20Exploration%20of%20a%20Larval%20Zebrafish%20Brain%20in%20Serial-Section%20Electron%20Microscopy%20Images&rft.jtitle=IEEE%20access&rft.au=Choi,%20Junyoung&rft.date=2021&rft.volume=9&rft.spage=78755&rft.epage=78763&rft.pages=78755-78763&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3084066&rft_dat=%3Cproquest_ieee_%3E2536031050%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536031050&rft_id=info:pmid/&rft_ieee_id=9440958&rft_doaj_id=oai_doaj_org_article_53f80570c8c44caf95eda59b0d7c06b0&rfr_iscdi=true