ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images
The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.78755-78763 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78763 |
---|---|
container_issue | |
container_start_page | 78755 |
container_title | IEEE access |
container_volume | 9 |
creator | Choi, Junyoung Hildebrand, David Grant Colburn Moon, Jungmin Quan, Tran Minh Tuan, Tran Anh Ko, Sungahn Jeong, Won-Ki |
description | The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions. |
doi_str_mv | 10.1109/ACCESS.2021.3084066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9440958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9440958</ieee_id><doaj_id>oai_doaj_org_article_53f80570c8c44caf95eda59b0d7c06b0</doaj_id><sourcerecordid>2536031050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhiMEEqtlf8FeLHFELXYcOza3EhWoVMQhwGEv1sQfi6s0Lna6kH-P06wWjowszWj0PmPNvEVxS_CaECzfbppm27brEpdkTbGoMOfPiquScLmijPLn_9Qvi5uUDjiHyC1WXxXTnf3u0zu0QTmdoUebAfpp9DqhdkqjPSIXItr-PvUhwujDgIJDgPYQH7L4znYRnE8_0PsIfkD5tTZ66Fet1Rf1ts9FzMVnr2NIOpwmtDvCvU2vihcO-mRvHvN18e3D9mvzabX_8nHXbPYrXdViXBHNHeUl7oyQWuMOJC2tI4I5W0ppCDjOKKamNJVkABU1hBtnrMWsrkpK6HWxW-aaAAd1iv4IcVIBvLo0QrxXEPPCvVWMOpExrIWuKg1OMmuAyQ6bWmPe4Tzr9TLrFMPPs02jOoRzzBdLqsznxZRgNqvoopo3TtG6p18JVrNlarFMzZapR8sy9WahftkuuKS9HbR9IrNlvKa1yNoc81bi_9WNHy_eNeE8jBm9XVBv7V9EVhWWTNA_O3izEg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536031050</pqid></control><display><type>article</type><title>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Choi, Junyoung ; Hildebrand, David Grant Colburn ; Moon, Jungmin ; Quan, Tran Minh ; Tuan, Tran Anh ; Ko, Sungahn ; Jeong, Won-Ki</creator><creatorcontrib>Choi, Junyoung ; Hildebrand, David Grant Colburn ; Moon, Jungmin ; Quan, Tran Minh ; Tuan, Tran Anh ; Ko, Sungahn ; Jeong, Won-Ki</creatorcontrib><description>The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3084066</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Brain ; Cell morphology ; Cells (biology) ; Computer Science ; Computer Science, Information Systems ; Data processing ; Data visualization ; Datasets ; Electron microscopy ; Engineering ; Engineering, Electrical & Electronic ; Graph theory ; Image reconstruction ; Image segmentation ; larval zebrafish ; Microscopy ; Morphology ; Science & Technology ; serial-section electron microscopy ; Shape ; Statistical analysis ; Technology ; Telecommunications ; Three-dimensional displays ; Visual analytics ; Zebrafish</subject><ispartof>IEEE access, 2021, Vol.9, p.78755-78763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000673788400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</citedby><cites>FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</cites><orcidid>0000-0001-7374-9168 ; 0000-0002-9393-6451 ; 0000-0002-2079-3517 ; 0000-0002-4255-4402 ; 0000-0002-7410-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9440958$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Choi, Junyoung</creatorcontrib><creatorcontrib>Hildebrand, David Grant Colburn</creatorcontrib><creatorcontrib>Moon, Jungmin</creatorcontrib><creatorcontrib>Quan, Tran Minh</creatorcontrib><creatorcontrib>Tuan, Tran Anh</creatorcontrib><creatorcontrib>Ko, Sungahn</creatorcontrib><creatorcontrib>Jeong, Won-Ki</creatorcontrib><title>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions.</description><subject>Brain</subject><subject>Cell morphology</subject><subject>Cells (biology)</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Data processing</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>Electron microscopy</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Graph theory</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>larval zebrafish</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Science & Technology</subject><subject>serial-section electron microscopy</subject><subject>Shape</subject><subject>Statistical analysis</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Three-dimensional displays</subject><subject>Visual analytics</subject><subject>Zebrafish</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2P0zAQhiMEEqtlf8FeLHFELXYcOza3EhWoVMQhwGEv1sQfi6s0Lna6kH-P06wWjowszWj0PmPNvEVxS_CaECzfbppm27brEpdkTbGoMOfPiquScLmijPLn_9Qvi5uUDjiHyC1WXxXTnf3u0zu0QTmdoUebAfpp9DqhdkqjPSIXItr-PvUhwujDgIJDgPYQH7L4znYRnE8_0PsIfkD5tTZ66Fet1Rf1ts9FzMVnr2NIOpwmtDvCvU2vihcO-mRvHvN18e3D9mvzabX_8nHXbPYrXdViXBHNHeUl7oyQWuMOJC2tI4I5W0ppCDjOKKamNJVkABU1hBtnrMWsrkpK6HWxW-aaAAd1iv4IcVIBvLo0QrxXEPPCvVWMOpExrIWuKg1OMmuAyQ6bWmPe4Tzr9TLrFMPPs02jOoRzzBdLqsznxZRgNqvoopo3TtG6p18JVrNlarFMzZapR8sy9WahftkuuKS9HbR9IrNlvKa1yNoc81bi_9WNHy_eNeE8jBm9XVBv7V9EVhWWTNA_O3izEg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Choi, Junyoung</creator><creator>Hildebrand, David Grant Colburn</creator><creator>Moon, Jungmin</creator><creator>Quan, Tran Minh</creator><creator>Tuan, Tran Anh</creator><creator>Ko, Sungahn</creator><creator>Jeong, Won-Ki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7374-9168</orcidid><orcidid>https://orcid.org/0000-0002-9393-6451</orcidid><orcidid>https://orcid.org/0000-0002-2079-3517</orcidid><orcidid>https://orcid.org/0000-0002-4255-4402</orcidid><orcidid>https://orcid.org/0000-0002-7410-5652</orcidid></search><sort><creationdate>2021</creationdate><title>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</title><author>Choi, Junyoung ; Hildebrand, David Grant Colburn ; Moon, Jungmin ; Quan, Tran Minh ; Tuan, Tran Anh ; Ko, Sungahn ; Jeong, Won-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-1c6f3620bd89cc0ba932ef185fe299d1af65303d2d495aa43d16dfdee05742313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain</topic><topic>Cell morphology</topic><topic>Cells (biology)</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Data processing</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>Electron microscopy</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Graph theory</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>larval zebrafish</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Science & Technology</topic><topic>serial-section electron microscopy</topic><topic>Shape</topic><topic>Statistical analysis</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Three-dimensional displays</topic><topic>Visual analytics</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Junyoung</creatorcontrib><creatorcontrib>Hildebrand, David Grant Colburn</creatorcontrib><creatorcontrib>Moon, Jungmin</creatorcontrib><creatorcontrib>Quan, Tran Minh</creatorcontrib><creatorcontrib>Tuan, Tran Anh</creatorcontrib><creatorcontrib>Ko, Sungahn</creatorcontrib><creatorcontrib>Jeong, Won-Ki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Junyoung</au><au>Hildebrand, David Grant Colburn</au><au>Moon, Jungmin</au><au>Quan, Tran Minh</au><au>Tuan, Tran Anh</au><au>Ko, Sungahn</au><au>Jeong, Won-Ki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>78755</spage><epage>78763</epage><pages>78755-78763</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The automation and improvement of nano-scale electron microscopy imaging technologies have expanded a push in neuroscience to understand brain circuits at the scale of individual cells and their connections. Most of this research effort, called 'connectomics', has been devoted to handling, processing, and segmenting large-scale image data to reconstruct graphs of neuronal connectivity. However, connectomics datasets contain a wealth of high-resolution information about the brain that could be leveraged to understand its detailed anatomy beyond just the connections between neurons, such as cell morphologies and distributions. This study introduces a novel visualization system, ZeVis , for the interactive exploration of a whole larval zebrafish brain using a terabyte-scale serial-section electron microscopy dataset. ZeVis combines 2D cross-sectional views and 3D volumetric visualizations of the input serial-section electron microscopy data with overlaid segmentation results to facilitate the analyses of various brain structures and their interpretations. The system also provides a graph-based data processing interface to generate subsets of feature segmentation data easily. The segmentation data can be filtered by morphological features or anatomical constraints, allowing statistical analysis and comparisons across regions. We applied ZeVis to actual data of a terabyte-scale whole-brain larval zebrafish and analyzed cell nucleus distributions in several anatomical regions.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3084066</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7374-9168</orcidid><orcidid>https://orcid.org/0000-0002-9393-6451</orcidid><orcidid>https://orcid.org/0000-0002-2079-3517</orcidid><orcidid>https://orcid.org/0000-0002-4255-4402</orcidid><orcidid>https://orcid.org/0000-0002-7410-5652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.78755-78763 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9440958 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Brain Cell morphology Cells (biology) Computer Science Computer Science, Information Systems Data processing Data visualization Datasets Electron microscopy Engineering Engineering, Electrical & Electronic Graph theory Image reconstruction Image segmentation larval zebrafish Microscopy Morphology Science & Technology serial-section electron microscopy Shape Statistical analysis Technology Telecommunications Three-dimensional displays Visual analytics Zebrafish |
title | ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZeVis:%20A%20Visual%20Analytics%20System%20for%20Exploration%20of%20a%20Larval%20Zebrafish%20Brain%20in%20Serial-Section%20Electron%20Microscopy%20Images&rft.jtitle=IEEE%20access&rft.au=Choi,%20Junyoung&rft.date=2021&rft.volume=9&rft.spage=78755&rft.epage=78763&rft.pages=78755-78763&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3084066&rft_dat=%3Cproquest_ieee_%3E2536031050%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536031050&rft_id=info:pmid/&rft_ieee_id=9440958&rft_doaj_id=oai_doaj_org_article_53f80570c8c44caf95eda59b0d7c06b0&rfr_iscdi=true |