3-D Magnetotelluric Inversion and Application Using the Edge-Based Finite Element With Hexahedral Mesh

Three-dimensional (3-D) inversion technique has become an important and practical approach for magnetotelluric (MT) data interpretation. In this article, we developed a 3-D parallelized MT inversion scheme using the edge-based finite element method and applied the developed method to the newly colle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-11
Hauptverfasser: Xie, Jingtao, Cai, Hongzhu, Hu, Xiangyun, Long, Zhidan, Xu, Shan, Fu, Changmin, Wang, Zhongxing, Di, Qingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Xie, Jingtao
Cai, Hongzhu
Hu, Xiangyun
Long, Zhidan
Xu, Shan
Fu, Changmin
Wang, Zhongxing
Di, Qingyun
description Three-dimensional (3-D) inversion technique has become an important and practical approach for magnetotelluric (MT) data interpretation. In this article, we developed a 3-D parallelized MT inversion scheme using the edge-based finite element method and applied the developed method to the newly collected MT data in the Xinjiang Luntai area. The distorted hexahedral element is adopted to incorporate topography into the forward modeling and inversion for complicated scenarios. We use the Gauss-Newton optimization method to minimize the objective functional for MT inversion. The developed algorithm is parallelized using MPI over frequencies and parallel direct solvers when solving the forward and adjoint problems for each frequency. We compare the performance of the least-square QR (LSQR) factorization and preconditioned conjugate gradient (PCG) solvers for the model update within each Gauss-Newton iteration and found that the LSQR solver is more stable. The developed inversion algorithm is validated using several synthetic models. Finally, we applied the inversion algorithm to the subsurface resistivity imaging in the Luntai area. The recovered geoelectric model from full 3-D inversion fits well with the known geological and geophysical information. The recovered model shows a low resistivity layer which may be caused by the salt strata. Besides, the inversion results reveal the movement tectonic in this survey area within a depth of 9 km.
doi_str_mv 10.1109/TGRS.2021.3079420
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9439945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9439945</ieee_id><sourcerecordid>2616718753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ce1865a98af593f5d07cba5afb3c336e3d43eb379b7dc53764a8bca4c8164eb73</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEnTXE7dF2wIuuFlSdPTNaNrZ5KJ_ntbNrw6vIfnPQcehO4pGVFK1NN69v4xiklMR4xIxWNygQZUiDQiCeeXaECoSqI4VfE1uvF-RwjlgsoBKln0ild620BoA9T10VmDF803OG_bBuumwOPDobZGhz5vvG22OFSAJ8UWomftocBT29jQbWrYQxPwpw0VnsOPrqBwusYr8NUtuip17eHuPIdoM52sX-bR8m22eBkvIxMrFiIDNE2EVqkuhWKlKIg0uRa6zJlhLAFWcAY5kyqXhRFMJlynudHcpDThkEs2RI-nuwfXfh3Bh2zXHl3TvczihCaSplKwjqInyrjWewdldnB2r91vRknW68x6nVmvMzvr7DoPp44FgH9ecaYUF-wPltpxWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616718753</pqid></control><display><type>article</type><title>3-D Magnetotelluric Inversion and Application Using the Edge-Based Finite Element With Hexahedral Mesh</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Jingtao ; Cai, Hongzhu ; Hu, Xiangyun ; Long, Zhidan ; Xu, Shan ; Fu, Changmin ; Wang, Zhongxing ; Di, Qingyun</creator><creatorcontrib>Xie, Jingtao ; Cai, Hongzhu ; Hu, Xiangyun ; Long, Zhidan ; Xu, Shan ; Fu, Changmin ; Wang, Zhongxing ; Di, Qingyun</creatorcontrib><description>Three-dimensional (3-D) inversion technique has become an important and practical approach for magnetotelluric (MT) data interpretation. In this article, we developed a 3-D parallelized MT inversion scheme using the edge-based finite element method and applied the developed method to the newly collected MT data in the Xinjiang Luntai area. The distorted hexahedral element is adopted to incorporate topography into the forward modeling and inversion for complicated scenarios. We use the Gauss-Newton optimization method to minimize the objective functional for MT inversion. The developed algorithm is parallelized using MPI over frequencies and parallel direct solvers when solving the forward and adjoint problems for each frequency. We compare the performance of the least-square QR (LSQR) factorization and preconditioned conjugate gradient (PCG) solvers for the model update within each Gauss-Newton iteration and found that the LSQR solver is more stable. The developed inversion algorithm is validated using several synthetic models. Finally, we applied the inversion algorithm to the subsurface resistivity imaging in the Luntai area. The recovered geoelectric model from full 3-D inversion fits well with the known geological and geophysical information. The recovered model shows a low resistivity layer which may be caused by the salt strata. Besides, the inversion results reveal the movement tectonic in this survey area within a depth of 9 km.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3079420</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D inversion ; Algorithms ; Aquatic reptiles ; Computational modeling ; Conductivity ; Convergence ; Data interpretation ; Data models ; Electrical resistivity ; finite element (FE) ; Finite element method ; Geoelectricity ; Iterative methods ; Luntai area ; magnetotelluric (MT) ; Mathematical model ; Mathematical models ; Memory management ; Optimization ; Parallel processing ; Solid modeling ; Solvers ; Surveying ; Tectonics ; Three dimensional models</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ce1865a98af593f5d07cba5afb3c336e3d43eb379b7dc53764a8bca4c8164eb73</citedby><cites>FETCH-LOGICAL-c293t-ce1865a98af593f5d07cba5afb3c336e3d43eb379b7dc53764a8bca4c8164eb73</cites><orcidid>0000-0003-3623-8304 ; 0000-0001-8055-6225 ; 0000-0001-7616-3111 ; 0000-0002-0368-0238 ; 0000-0003-2516-2295 ; 0000-0003-0390-8017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9439945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9439945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Jingtao</creatorcontrib><creatorcontrib>Cai, Hongzhu</creatorcontrib><creatorcontrib>Hu, Xiangyun</creatorcontrib><creatorcontrib>Long, Zhidan</creatorcontrib><creatorcontrib>Xu, Shan</creatorcontrib><creatorcontrib>Fu, Changmin</creatorcontrib><creatorcontrib>Wang, Zhongxing</creatorcontrib><creatorcontrib>Di, Qingyun</creatorcontrib><title>3-D Magnetotelluric Inversion and Application Using the Edge-Based Finite Element With Hexahedral Mesh</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Three-dimensional (3-D) inversion technique has become an important and practical approach for magnetotelluric (MT) data interpretation. In this article, we developed a 3-D parallelized MT inversion scheme using the edge-based finite element method and applied the developed method to the newly collected MT data in the Xinjiang Luntai area. The distorted hexahedral element is adopted to incorporate topography into the forward modeling and inversion for complicated scenarios. We use the Gauss-Newton optimization method to minimize the objective functional for MT inversion. The developed algorithm is parallelized using MPI over frequencies and parallel direct solvers when solving the forward and adjoint problems for each frequency. We compare the performance of the least-square QR (LSQR) factorization and preconditioned conjugate gradient (PCG) solvers for the model update within each Gauss-Newton iteration and found that the LSQR solver is more stable. The developed inversion algorithm is validated using several synthetic models. Finally, we applied the inversion algorithm to the subsurface resistivity imaging in the Luntai area. The recovered geoelectric model from full 3-D inversion fits well with the known geological and geophysical information. The recovered model shows a low resistivity layer which may be caused by the salt strata. Besides, the inversion results reveal the movement tectonic in this survey area within a depth of 9 km.</description><subject>3-D inversion</subject><subject>Algorithms</subject><subject>Aquatic reptiles</subject><subject>Computational modeling</subject><subject>Conductivity</subject><subject>Convergence</subject><subject>Data interpretation</subject><subject>Data models</subject><subject>Electrical resistivity</subject><subject>finite element (FE)</subject><subject>Finite element method</subject><subject>Geoelectricity</subject><subject>Iterative methods</subject><subject>Luntai area</subject><subject>magnetotelluric (MT)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Memory management</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Solid modeling</subject><subject>Solvers</subject><subject>Surveying</subject><subject>Tectonics</subject><subject>Three dimensional models</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEnTXE7dF2wIuuFlSdPTNaNrZ5KJ_ntbNrw6vIfnPQcehO4pGVFK1NN69v4xiklMR4xIxWNygQZUiDQiCeeXaECoSqI4VfE1uvF-RwjlgsoBKln0ild620BoA9T10VmDF803OG_bBuumwOPDobZGhz5vvG22OFSAJ8UWomftocBT29jQbWrYQxPwpw0VnsOPrqBwusYr8NUtuip17eHuPIdoM52sX-bR8m22eBkvIxMrFiIDNE2EVqkuhWKlKIg0uRa6zJlhLAFWcAY5kyqXhRFMJlynudHcpDThkEs2RI-nuwfXfh3Bh2zXHl3TvczihCaSplKwjqInyrjWewdldnB2r91vRknW68x6nVmvMzvr7DoPp44FgH9ecaYUF-wPltpxWg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xie, Jingtao</creator><creator>Cai, Hongzhu</creator><creator>Hu, Xiangyun</creator><creator>Long, Zhidan</creator><creator>Xu, Shan</creator><creator>Fu, Changmin</creator><creator>Wang, Zhongxing</creator><creator>Di, Qingyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3623-8304</orcidid><orcidid>https://orcid.org/0000-0001-8055-6225</orcidid><orcidid>https://orcid.org/0000-0001-7616-3111</orcidid><orcidid>https://orcid.org/0000-0002-0368-0238</orcidid><orcidid>https://orcid.org/0000-0003-2516-2295</orcidid><orcidid>https://orcid.org/0000-0003-0390-8017</orcidid></search><sort><creationdate>2022</creationdate><title>3-D Magnetotelluric Inversion and Application Using the Edge-Based Finite Element With Hexahedral Mesh</title><author>Xie, Jingtao ; Cai, Hongzhu ; Hu, Xiangyun ; Long, Zhidan ; Xu, Shan ; Fu, Changmin ; Wang, Zhongxing ; Di, Qingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ce1865a98af593f5d07cba5afb3c336e3d43eb379b7dc53764a8bca4c8164eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D inversion</topic><topic>Algorithms</topic><topic>Aquatic reptiles</topic><topic>Computational modeling</topic><topic>Conductivity</topic><topic>Convergence</topic><topic>Data interpretation</topic><topic>Data models</topic><topic>Electrical resistivity</topic><topic>finite element (FE)</topic><topic>Finite element method</topic><topic>Geoelectricity</topic><topic>Iterative methods</topic><topic>Luntai area</topic><topic>magnetotelluric (MT)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Memory management</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Solid modeling</topic><topic>Solvers</topic><topic>Surveying</topic><topic>Tectonics</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jingtao</creatorcontrib><creatorcontrib>Cai, Hongzhu</creatorcontrib><creatorcontrib>Hu, Xiangyun</creatorcontrib><creatorcontrib>Long, Zhidan</creatorcontrib><creatorcontrib>Xu, Shan</creatorcontrib><creatorcontrib>Fu, Changmin</creatorcontrib><creatorcontrib>Wang, Zhongxing</creatorcontrib><creatorcontrib>Di, Qingyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Jingtao</au><au>Cai, Hongzhu</au><au>Hu, Xiangyun</au><au>Long, Zhidan</au><au>Xu, Shan</au><au>Fu, Changmin</au><au>Wang, Zhongxing</au><au>Di, Qingyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Magnetotelluric Inversion and Application Using the Edge-Based Finite Element With Hexahedral Mesh</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Three-dimensional (3-D) inversion technique has become an important and practical approach for magnetotelluric (MT) data interpretation. In this article, we developed a 3-D parallelized MT inversion scheme using the edge-based finite element method and applied the developed method to the newly collected MT data in the Xinjiang Luntai area. The distorted hexahedral element is adopted to incorporate topography into the forward modeling and inversion for complicated scenarios. We use the Gauss-Newton optimization method to minimize the objective functional for MT inversion. The developed algorithm is parallelized using MPI over frequencies and parallel direct solvers when solving the forward and adjoint problems for each frequency. We compare the performance of the least-square QR (LSQR) factorization and preconditioned conjugate gradient (PCG) solvers for the model update within each Gauss-Newton iteration and found that the LSQR solver is more stable. The developed inversion algorithm is validated using several synthetic models. Finally, we applied the inversion algorithm to the subsurface resistivity imaging in the Luntai area. The recovered geoelectric model from full 3-D inversion fits well with the known geological and geophysical information. The recovered model shows a low resistivity layer which may be caused by the salt strata. Besides, the inversion results reveal the movement tectonic in this survey area within a depth of 9 km.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3079420</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3623-8304</orcidid><orcidid>https://orcid.org/0000-0001-8055-6225</orcidid><orcidid>https://orcid.org/0000-0001-7616-3111</orcidid><orcidid>https://orcid.org/0000-0002-0368-0238</orcidid><orcidid>https://orcid.org/0000-0003-2516-2295</orcidid><orcidid>https://orcid.org/0000-0003-0390-8017</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-11
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9439945
source IEEE Electronic Library (IEL)
subjects 3-D inversion
Algorithms
Aquatic reptiles
Computational modeling
Conductivity
Convergence
Data interpretation
Data models
Electrical resistivity
finite element (FE)
Finite element method
Geoelectricity
Iterative methods
Luntai area
magnetotelluric (MT)
Mathematical model
Mathematical models
Memory management
Optimization
Parallel processing
Solid modeling
Solvers
Surveying
Tectonics
Three dimensional models
title 3-D Magnetotelluric Inversion and Application Using the Edge-Based Finite Element With Hexahedral Mesh
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Magnetotelluric%20Inversion%20and%20Application%20Using%20the%20Edge-Based%20Finite%20Element%20With%20Hexahedral%20Mesh&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xie,%20Jingtao&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3079420&rft_dat=%3Cproquest_RIE%3E2616718753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616718753&rft_id=info:pmid/&rft_ieee_id=9439945&rfr_iscdi=true