Distributed Learning-Based Cache Replacement in Collaborative Edge Networks

In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2021-08, Vol.25 (8), p.2669-2672
Hauptverfasser: Sun, Zhenfeng, Nakhai, Mohammad Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2672
container_issue 8
container_start_page 2669
container_title IEEE communications letters
container_volume 25
creator Sun, Zhenfeng
Nakhai, Mohammad Reza
description In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run.
doi_str_mv 10.1109/LCOMM.2021.3081823
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9435369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9435369</ieee_id><sourcerecordid>2560134808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFjzixlxDKQ6RUQrC2bGdSXNKk2CmIv8elFZuZuaN7Z6SD0DnBE0KwvKrK-Ww2oZiSCcOCCMoO0IhwLlIay2GcsZBpUUhxjE5CWGKMBeVkhJ5uXRi8M5sB6qQC7TvXLdIbHaIstX2H5AXWrbawgm5IXJeUfdtq03s9uC9IpvUCkmcYvnv_EU7RUaPbAGf7PkZvd9PX8iGt5veP5XWVWir5kDIrSVEwzjUAtrWNmmMSd3ld5IxSwRmmhQZDZKFJLYDljbBNVhtiDDUZG6PL3d217z83EAa17De-iy8V5TkmLBNYRBfduazvQ_DQqLV3K-1_FMFqC039QVNbaGoPLYYudiEHAP8BmTHOcsl-ASpvZ8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134808</pqid></control><display><type>article</type><title>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Zhenfeng ; Nakhai, Mohammad Reza</creator><creatorcontrib>Sun, Zhenfeng ; Nakhai, Mohammad Reza</creatorcontrib><description>In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3081823</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Base stations ; Caching ; Cloud computing ; Collaboration ; Collaborative edge network ; Decision making ; distributed content caching ; End users ; Heuristic algorithms ; Libraries ; Nodes ; Optimization ; Quality of experience ; Storage units ; Thompson sampling</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2669-2672</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</citedby><cites>FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</cites><orcidid>0000-0001-6718-8448 ; 0000-0001-7468-9873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9435369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9435369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Zhenfeng</creatorcontrib><creatorcontrib>Nakhai, Mohammad Reza</creatorcontrib><title>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run.</description><subject>Algorithms</subject><subject>Base stations</subject><subject>Caching</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Collaborative edge network</subject><subject>Decision making</subject><subject>distributed content caching</subject><subject>End users</subject><subject>Heuristic algorithms</subject><subject>Libraries</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Quality of experience</subject><subject>Storage units</subject><subject>Thompson sampling</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFjzixlxDKQ6RUQrC2bGdSXNKk2CmIv8elFZuZuaN7Z6SD0DnBE0KwvKrK-Ww2oZiSCcOCCMoO0IhwLlIay2GcsZBpUUhxjE5CWGKMBeVkhJ5uXRi8M5sB6qQC7TvXLdIbHaIstX2H5AXWrbawgm5IXJeUfdtq03s9uC9IpvUCkmcYvnv_EU7RUaPbAGf7PkZvd9PX8iGt5veP5XWVWir5kDIrSVEwzjUAtrWNmmMSd3ld5IxSwRmmhQZDZKFJLYDljbBNVhtiDDUZG6PL3d217z83EAa17De-iy8V5TkmLBNYRBfduazvQ_DQqLV3K-1_FMFqC039QVNbaGoPLYYudiEHAP8BmTHOcsl-ASpvZ8M</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sun, Zhenfeng</creator><creator>Nakhai, Mohammad Reza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6718-8448</orcidid><orcidid>https://orcid.org/0000-0001-7468-9873</orcidid></search><sort><creationdate>20210801</creationdate><title>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</title><author>Sun, Zhenfeng ; Nakhai, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Base stations</topic><topic>Caching</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Collaborative edge network</topic><topic>Decision making</topic><topic>distributed content caching</topic><topic>End users</topic><topic>Heuristic algorithms</topic><topic>Libraries</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Quality of experience</topic><topic>Storage units</topic><topic>Thompson sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhenfeng</creatorcontrib><creatorcontrib>Nakhai, Mohammad Reza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Zhenfeng</au><au>Nakhai, Mohammad Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2669</spage><epage>2672</epage><pages>2669-2672</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3081823</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6718-8448</orcidid><orcidid>https://orcid.org/0000-0001-7468-9873</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2021-08, Vol.25 (8), p.2669-2672
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_9435369
source IEEE Electronic Library (IEL)
subjects Algorithms
Base stations
Caching
Cloud computing
Collaboration
Collaborative edge network
Decision making
distributed content caching
End users
Heuristic algorithms
Libraries
Nodes
Optimization
Quality of experience
Storage units
Thompson sampling
title Distributed Learning-Based Cache Replacement in Collaborative Edge Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Learning-Based%20Cache%20Replacement%20in%20Collaborative%20Edge%20Networks&rft.jtitle=IEEE%20communications%20letters&rft.au=Sun,%20Zhenfeng&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2669&rft.epage=2672&rft.pages=2669-2672&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3081823&rft_dat=%3Cproquest_RIE%3E2560134808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134808&rft_id=info:pmid/&rft_ieee_id=9435369&rfr_iscdi=true