Distributed Learning-Based Cache Replacement in Collaborative Edge Networks
In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbo...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2021-08, Vol.25 (8), p.2669-2672 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2672 |
---|---|
container_issue | 8 |
container_start_page | 2669 |
container_title | IEEE communications letters |
container_volume | 25 |
creator | Sun, Zhenfeng Nakhai, Mohammad Reza |
description | In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run. |
doi_str_mv | 10.1109/LCOMM.2021.3081823 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9435369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9435369</ieee_id><sourcerecordid>2560134808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFjzixlxDKQ6RUQrC2bGdSXNKk2CmIv8elFZuZuaN7Z6SD0DnBE0KwvKrK-Ww2oZiSCcOCCMoO0IhwLlIay2GcsZBpUUhxjE5CWGKMBeVkhJ5uXRi8M5sB6qQC7TvXLdIbHaIstX2H5AXWrbawgm5IXJeUfdtq03s9uC9IpvUCkmcYvnv_EU7RUaPbAGf7PkZvd9PX8iGt5veP5XWVWir5kDIrSVEwzjUAtrWNmmMSd3ld5IxSwRmmhQZDZKFJLYDljbBNVhtiDDUZG6PL3d217z83EAa17De-iy8V5TkmLBNYRBfduazvQ_DQqLV3K-1_FMFqC039QVNbaGoPLYYudiEHAP8BmTHOcsl-ASpvZ8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134808</pqid></control><display><type>article</type><title>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Zhenfeng ; Nakhai, Mohammad Reza</creator><creatorcontrib>Sun, Zhenfeng ; Nakhai, Mohammad Reza</creatorcontrib><description>In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3081823</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Base stations ; Caching ; Cloud computing ; Collaboration ; Collaborative edge network ; Decision making ; distributed content caching ; End users ; Heuristic algorithms ; Libraries ; Nodes ; Optimization ; Quality of experience ; Storage units ; Thompson sampling</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2669-2672</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</citedby><cites>FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</cites><orcidid>0000-0001-6718-8448 ; 0000-0001-7468-9873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9435369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9435369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Zhenfeng</creatorcontrib><creatorcontrib>Nakhai, Mohammad Reza</creatorcontrib><title>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run.</description><subject>Algorithms</subject><subject>Base stations</subject><subject>Caching</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Collaborative edge network</subject><subject>Decision making</subject><subject>distributed content caching</subject><subject>End users</subject><subject>Heuristic algorithms</subject><subject>Libraries</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Quality of experience</subject><subject>Storage units</subject><subject>Thompson sampling</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFjzixlxDKQ6RUQrC2bGdSXNKk2CmIv8elFZuZuaN7Z6SD0DnBE0KwvKrK-Ww2oZiSCcOCCMoO0IhwLlIay2GcsZBpUUhxjE5CWGKMBeVkhJ5uXRi8M5sB6qQC7TvXLdIbHaIstX2H5AXWrbawgm5IXJeUfdtq03s9uC9IpvUCkmcYvnv_EU7RUaPbAGf7PkZvd9PX8iGt5veP5XWVWir5kDIrSVEwzjUAtrWNmmMSd3ld5IxSwRmmhQZDZKFJLYDljbBNVhtiDDUZG6PL3d217z83EAa17De-iy8V5TkmLBNYRBfduazvQ_DQqLV3K-1_FMFqC039QVNbaGoPLYYudiEHAP8BmTHOcsl-ASpvZ8M</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sun, Zhenfeng</creator><creator>Nakhai, Mohammad Reza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6718-8448</orcidid><orcidid>https://orcid.org/0000-0001-7468-9873</orcidid></search><sort><creationdate>20210801</creationdate><title>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</title><author>Sun, Zhenfeng ; Nakhai, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3c9177355aee0cdc3c95019176d76322853027aeb197a1d8e36f8cf4db1bb2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Base stations</topic><topic>Caching</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Collaborative edge network</topic><topic>Decision making</topic><topic>distributed content caching</topic><topic>End users</topic><topic>Heuristic algorithms</topic><topic>Libraries</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Quality of experience</topic><topic>Storage units</topic><topic>Thompson sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhenfeng</creatorcontrib><creatorcontrib>Nakhai, Mohammad Reza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Zhenfeng</au><au>Nakhai, Mohammad Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Learning-Based Cache Replacement in Collaborative Edge Networks</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2669</spage><epage>2672</epage><pages>2669-2672</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this letter, distributed content caching is considered in a collaborative edge caching system where a central infostation broadcasts information about the content migration to all edge nodes. Each edge node is equipped with a small base station for fetching the requested contents from its neighbouring edge nodes and with a storage unit for caching the contents. To achieve efficient content caching and collaboration, an online decision-making problem of maximizing the cache-hit-ratio whilst ensuring the end users' quality-of-experience (QoE) is formulated. Furthermore, it is assumed that the content popularity knowledge is not available in advance and has to be leaned regularly over time in an online manner. To this end, we propose a distributed online content-popularity leaning algorithm based on Thompson sampling for updating the cache storage units in real-time. Simulation results demonstrate that the proposed algorithm outperforms the benchmarks in terms of the cache-hit-ratio and QoE in the long run.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3081823</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6718-8448</orcidid><orcidid>https://orcid.org/0000-0001-7468-9873</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2021-08, Vol.25 (8), p.2669-2672 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_9435369 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Base stations Caching Cloud computing Collaboration Collaborative edge network Decision making distributed content caching End users Heuristic algorithms Libraries Nodes Optimization Quality of experience Storage units Thompson sampling |
title | Distributed Learning-Based Cache Replacement in Collaborative Edge Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Learning-Based%20Cache%20Replacement%20in%20Collaborative%20Edge%20Networks&rft.jtitle=IEEE%20communications%20letters&rft.au=Sun,%20Zhenfeng&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2669&rft.epage=2672&rft.pages=2669-2672&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3081823&rft_dat=%3Cproquest_RIE%3E2560134808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134808&rft_id=info:pmid/&rft_ieee_id=9435369&rfr_iscdi=true |