Identifying Influential Spreaders in Social Networks Through Discrete Moth-Flame Optimization

Influence maximization in a social network refers to the selection of node sets that support the fastest and broadest propagation of information under a chosen transmission model. The efficient identification of such influence-maximizing groups is an active area of research with diverse practical re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2021-12, Vol.25 (6), p.1091-1102
Hauptverfasser: Wang, Lu, Ma, Lei, Wang, Chao, Xie, Neng-Gang, Koh, Jin Ming, Cheong, Kang Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 6
container_start_page 1091
container_title IEEE transactions on evolutionary computation
container_volume 25
creator Wang, Lu
Ma, Lei
Wang, Chao
Xie, Neng-Gang
Koh, Jin Ming
Cheong, Kang Hao
description Influence maximization in a social network refers to the selection of node sets that support the fastest and broadest propagation of information under a chosen transmission model. The efficient identification of such influence-maximizing groups is an active area of research with diverse practical relevance. Greedy-based methods can provide solutions of reliable accuracy, but the computational cost of the required Monte Carlo simulations renders them infeasible for large networks. Meanwhile, although network structure-based centrality methods can be efficient, they typically achieve poor recognition accuracy. Here, we establish an effective influence assessment model based both on the total valuation and variance in valuation of neighbor nodes, motivated by the possibility of unreliable communication channels. We then develop a discrete moth-flame optimization method to search for influence-maximizing node sets, using a local crossover and mutation evolution scheme atop the canonical moth position updates. To accelerate convergence, a search area selection scheme derived from a degree-based heuristic is used. The experimental results on five real-world social networks, comparing our proposed method against several alternatives in the current literature, indicates our approach to be effective and robust in tackling the influence maximization problem.
doi_str_mv 10.1109/TEVC.2021.3081478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9434427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9434427</ieee_id><sourcerecordid>2604921508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-cd7a1fdf759d8b0108a16ed423a7aa5c37d8e351b78d1ad03c9854340e9ee45b3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOKcfQHwp-NyZNGmTPMp0OpjuYVN8kZA1t1tm19QkReant2XDp_uHc-65_KLoGqMRxkjcLR_fx6MUpXhEEMeU8ZNogAXFCUJpftr1iIuEMf5xHl14v0UI0wyLQfQ51VAHU-5NvY6ndVm1_aiqeNE4UBqcj00dL2zR714h_Fj35ePlxtl2vYkfjC8cBIhfbNgkk0rtIJ43wezMrwrG1pfRWakqD1fHOozeJo_L8XMymz9Nx_ezpCAkD0mhmcKlLlkmNF-h7leFc9A0JYoplRWEaQ4kwyvGNVYakULwjBKKQADQbEWG0e3hbuPsdws-yK1tXd1FyjRHVKQ4Q7xT4YOqcNZ7B6VsnNkpt5cYyZ6i7CnKnqI8Uuw8NwePAYB_vejCacrIH4zMbyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604921508</pqid></control><display><type>article</type><title>Identifying Influential Spreaders in Social Networks Through Discrete Moth-Flame Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lu ; Ma, Lei ; Wang, Chao ; Xie, Neng-Gang ; Koh, Jin Ming ; Cheong, Kang Hao</creator><creatorcontrib>Wang, Lu ; Ma, Lei ; Wang, Chao ; Xie, Neng-Gang ; Koh, Jin Ming ; Cheong, Kang Hao</creatorcontrib><description>Influence maximization in a social network refers to the selection of node sets that support the fastest and broadest propagation of information under a chosen transmission model. The efficient identification of such influence-maximizing groups is an active area of research with diverse practical relevance. Greedy-based methods can provide solutions of reliable accuracy, but the computational cost of the required Monte Carlo simulations renders them infeasible for large networks. Meanwhile, although network structure-based centrality methods can be efficient, they typically achieve poor recognition accuracy. Here, we establish an effective influence assessment model based both on the total valuation and variance in valuation of neighbor nodes, motivated by the possibility of unreliable communication channels. We then develop a discrete moth-flame optimization method to search for influence-maximizing node sets, using a local crossover and mutation evolution scheme atop the canonical moth position updates. To accelerate convergence, a search area selection scheme derived from a degree-based heuristic is used. The experimental results on five real-world social networks, comparing our proposed method against several alternatives in the current literature, indicates our approach to be effective and robust in tackling the influence maximization problem.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2021.3081478</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Assessment model ; Computational modeling ; Cost accounting ; Estimation ; Heuristic algorithms ; influence maximization ; Maximization ; moth-flame optimization (MFO) ; Mutation ; Optimization ; Search problems ; Social networking (online) ; Social networks ; Spreaders</subject><ispartof>IEEE transactions on evolutionary computation, 2021-12, Vol.25 (6), p.1091-1102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-cd7a1fdf759d8b0108a16ed423a7aa5c37d8e351b78d1ad03c9854340e9ee45b3</citedby><cites>FETCH-LOGICAL-c336t-cd7a1fdf759d8b0108a16ed423a7aa5c37d8e351b78d1ad03c9854340e9ee45b3</cites><orcidid>0000-0002-2226-9575 ; 0000-0002-1296-1349 ; 0000-0002-4475-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9434427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9434427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Xie, Neng-Gang</creatorcontrib><creatorcontrib>Koh, Jin Ming</creatorcontrib><creatorcontrib>Cheong, Kang Hao</creatorcontrib><title>Identifying Influential Spreaders in Social Networks Through Discrete Moth-Flame Optimization</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Influence maximization in a social network refers to the selection of node sets that support the fastest and broadest propagation of information under a chosen transmission model. The efficient identification of such influence-maximizing groups is an active area of research with diverse practical relevance. Greedy-based methods can provide solutions of reliable accuracy, but the computational cost of the required Monte Carlo simulations renders them infeasible for large networks. Meanwhile, although network structure-based centrality methods can be efficient, they typically achieve poor recognition accuracy. Here, we establish an effective influence assessment model based both on the total valuation and variance in valuation of neighbor nodes, motivated by the possibility of unreliable communication channels. We then develop a discrete moth-flame optimization method to search for influence-maximizing node sets, using a local crossover and mutation evolution scheme atop the canonical moth position updates. To accelerate convergence, a search area selection scheme derived from a degree-based heuristic is used. The experimental results on five real-world social networks, comparing our proposed method against several alternatives in the current literature, indicates our approach to be effective and robust in tackling the influence maximization problem.</description><subject>Accuracy</subject><subject>Assessment model</subject><subject>Computational modeling</subject><subject>Cost accounting</subject><subject>Estimation</subject><subject>Heuristic algorithms</subject><subject>influence maximization</subject><subject>Maximization</subject><subject>moth-flame optimization (MFO)</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Search problems</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Spreaders</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYsoOKcfQHwp-NyZNGmTPMp0OpjuYVN8kZA1t1tm19QkReant2XDp_uHc-65_KLoGqMRxkjcLR_fx6MUpXhEEMeU8ZNogAXFCUJpftr1iIuEMf5xHl14v0UI0wyLQfQ51VAHU-5NvY6ndVm1_aiqeNE4UBqcj00dL2zR714h_Fj35ePlxtl2vYkfjC8cBIhfbNgkk0rtIJ43wezMrwrG1pfRWakqD1fHOozeJo_L8XMymz9Nx_ezpCAkD0mhmcKlLlkmNF-h7leFc9A0JYoplRWEaQ4kwyvGNVYakULwjBKKQADQbEWG0e3hbuPsdws-yK1tXd1FyjRHVKQ4Q7xT4YOqcNZ7B6VsnNkpt5cYyZ6i7CnKnqI8Uuw8NwePAYB_vejCacrIH4zMbyw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Lu</creator><creator>Ma, Lei</creator><creator>Wang, Chao</creator><creator>Xie, Neng-Gang</creator><creator>Koh, Jin Ming</creator><creator>Cheong, Kang Hao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2226-9575</orcidid><orcidid>https://orcid.org/0000-0002-1296-1349</orcidid><orcidid>https://orcid.org/0000-0002-4475-5451</orcidid></search><sort><creationdate>20211201</creationdate><title>Identifying Influential Spreaders in Social Networks Through Discrete Moth-Flame Optimization</title><author>Wang, Lu ; Ma, Lei ; Wang, Chao ; Xie, Neng-Gang ; Koh, Jin Ming ; Cheong, Kang Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-cd7a1fdf759d8b0108a16ed423a7aa5c37d8e351b78d1ad03c9854340e9ee45b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Assessment model</topic><topic>Computational modeling</topic><topic>Cost accounting</topic><topic>Estimation</topic><topic>Heuristic algorithms</topic><topic>influence maximization</topic><topic>Maximization</topic><topic>moth-flame optimization (MFO)</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Search problems</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Spreaders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Xie, Neng-Gang</creatorcontrib><creatorcontrib>Koh, Jin Ming</creatorcontrib><creatorcontrib>Cheong, Kang Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lu</au><au>Ma, Lei</au><au>Wang, Chao</au><au>Xie, Neng-Gang</au><au>Koh, Jin Ming</au><au>Cheong, Kang Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Influential Spreaders in Social Networks Through Discrete Moth-Flame Optimization</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>25</volume><issue>6</issue><spage>1091</spage><epage>1102</epage><pages>1091-1102</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Influence maximization in a social network refers to the selection of node sets that support the fastest and broadest propagation of information under a chosen transmission model. The efficient identification of such influence-maximizing groups is an active area of research with diverse practical relevance. Greedy-based methods can provide solutions of reliable accuracy, but the computational cost of the required Monte Carlo simulations renders them infeasible for large networks. Meanwhile, although network structure-based centrality methods can be efficient, they typically achieve poor recognition accuracy. Here, we establish an effective influence assessment model based both on the total valuation and variance in valuation of neighbor nodes, motivated by the possibility of unreliable communication channels. We then develop a discrete moth-flame optimization method to search for influence-maximizing node sets, using a local crossover and mutation evolution scheme atop the canonical moth position updates. To accelerate convergence, a search area selection scheme derived from a degree-based heuristic is used. The experimental results on five real-world social networks, comparing our proposed method against several alternatives in the current literature, indicates our approach to be effective and robust in tackling the influence maximization problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2021.3081478</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2226-9575</orcidid><orcidid>https://orcid.org/0000-0002-1296-1349</orcidid><orcidid>https://orcid.org/0000-0002-4475-5451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2021-12, Vol.25 (6), p.1091-1102
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_9434427
source IEEE Electronic Library (IEL)
subjects Accuracy
Assessment model
Computational modeling
Cost accounting
Estimation
Heuristic algorithms
influence maximization
Maximization
moth-flame optimization (MFO)
Mutation
Optimization
Search problems
Social networking (online)
Social networks
Spreaders
title Identifying Influential Spreaders in Social Networks Through Discrete Moth-Flame Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Influential%20Spreaders%20in%20Social%20Networks%20Through%20Discrete%20Moth-Flame%20Optimization&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Wang,%20Lu&rft.date=2021-12-01&rft.volume=25&rft.issue=6&rft.spage=1091&rft.epage=1102&rft.pages=1091-1102&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2021.3081478&rft_dat=%3Cproquest_RIE%3E2604921508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604921508&rft_id=info:pmid/&rft_ieee_id=9434427&rfr_iscdi=true